| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elicc1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 )  →  𝐶  ∈  ℝ* ) | 
						
							| 3 | 2 | a1i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 )  →  𝐶  ∈  ℝ* ) ) | 
						
							| 4 |  | xrletr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 )  →  𝐴  ≤  𝐵 ) ) | 
						
							| 5 | 4 | exp5o | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐶  ∈  ℝ*  →  ( 𝐵  ∈  ℝ*  →  ( 𝐴  ≤  𝐶  →  ( 𝐶  ≤  𝐵  →  𝐴  ≤  𝐵 ) ) ) ) ) | 
						
							| 6 | 5 | com23 | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐵  ∈  ℝ*  →  ( 𝐶  ∈  ℝ*  →  ( 𝐴  ≤  𝐶  →  ( 𝐶  ≤  𝐵  →  𝐴  ≤  𝐵 ) ) ) ) ) | 
						
							| 7 | 6 | imp5q | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 )  →  𝐴  ≤  𝐵 ) ) | 
						
							| 8 |  | df-ne | ⊢ ( 𝐶  ≠  𝐴  ↔  ¬  𝐶  =  𝐴 ) | 
						
							| 9 |  | xrleltne | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶 )  →  ( 𝐴  <  𝐶  ↔  𝐶  ≠  𝐴 ) ) | 
						
							| 10 | 9 | biimprd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶 )  →  ( 𝐶  ≠  𝐴  →  𝐴  <  𝐶 ) ) | 
						
							| 11 | 8 10 | biimtrrid | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶 )  →  ( ¬  𝐶  =  𝐴  →  𝐴  <  𝐶 ) ) | 
						
							| 12 | 11 | 3adant3r3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) )  →  ( ¬  𝐶  =  𝐴  →  𝐴  <  𝐶 ) ) | 
						
							| 13 | 12 | adantlr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) )  →  ( ¬  𝐶  =  𝐴  →  𝐴  <  𝐶 ) ) | 
						
							| 14 |  | eqcom | ⊢ ( 𝐶  =  𝐵  ↔  𝐵  =  𝐶 ) | 
						
							| 15 | 14 | necon3bbii | ⊢ ( ¬  𝐶  =  𝐵  ↔  𝐵  ≠  𝐶 ) | 
						
							| 16 |  | xrleltne | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ≤  𝐵 )  →  ( 𝐶  <  𝐵  ↔  𝐵  ≠  𝐶 ) ) | 
						
							| 17 | 16 | biimprd | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ≤  𝐵 )  →  ( 𝐵  ≠  𝐶  →  𝐶  <  𝐵 ) ) | 
						
							| 18 | 15 17 | biimtrid | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ≤  𝐵 )  →  ( ¬  𝐶  =  𝐵  →  𝐶  <  𝐵 ) ) | 
						
							| 19 | 18 | 3exp | ⊢ ( 𝐶  ∈  ℝ*  →  ( 𝐵  ∈  ℝ*  →  ( 𝐶  ≤  𝐵  →  ( ¬  𝐶  =  𝐵  →  𝐶  <  𝐵 ) ) ) ) | 
						
							| 20 | 19 | com12 | ⊢ ( 𝐵  ∈  ℝ*  →  ( 𝐶  ∈  ℝ*  →  ( 𝐶  ≤  𝐵  →  ( ¬  𝐶  =  𝐵  →  𝐶  <  𝐵 ) ) ) ) | 
						
							| 21 | 20 | imp32 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ*  ∧  𝐶  ≤  𝐵 ) )  →  ( ¬  𝐶  =  𝐵  →  𝐶  <  𝐵 ) ) | 
						
							| 22 | 21 | 3adantr2 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) )  →  ( ¬  𝐶  =  𝐵  →  𝐶  <  𝐵 ) ) | 
						
							| 23 | 22 | adantll | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) )  →  ( ¬  𝐶  =  𝐵  →  𝐶  <  𝐵 ) ) | 
						
							| 24 | 13 23 | anim12d | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) )  →  ( ( ¬  𝐶  =  𝐴  ∧  ¬  𝐶  =  𝐵 )  →  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) ) | 
						
							| 25 | 24 | ex | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 )  →  ( ( ¬  𝐶  =  𝐴  ∧  ¬  𝐶  =  𝐵 )  →  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) ) ) | 
						
							| 26 |  | df-or | ⊢ ( ( 𝐶  =  𝐴  ∨  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) )  ↔  ( ¬  𝐶  =  𝐴  →  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) ) ) | 
						
							| 27 |  | 3orass | ⊢ ( ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 )  ↔  ( 𝐶  =  𝐴  ∨  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) ) ) | 
						
							| 28 |  | pm5.6 | ⊢ ( ( ( ¬  𝐶  =  𝐴  ∧  ¬  𝐶  =  𝐵 )  →  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) )  ↔  ( ¬  𝐶  =  𝐴  →  ( 𝐶  =  𝐵  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) ) ) | 
						
							| 29 |  | orcom | ⊢ ( ( 𝐶  =  𝐵  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) )  ↔  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) ) | 
						
							| 30 | 29 | imbi2i | ⊢ ( ( ¬  𝐶  =  𝐴  →  ( 𝐶  =  𝐵  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) )  ↔  ( ¬  𝐶  =  𝐴  →  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) ) ) | 
						
							| 31 | 28 30 | bitri | ⊢ ( ( ( ¬  𝐶  =  𝐴  ∧  ¬  𝐶  =  𝐵 )  →  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) )  ↔  ( ¬  𝐶  =  𝐴  →  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) ) ) | 
						
							| 32 | 26 27 31 | 3bitr4ri | ⊢ ( ( ( ¬  𝐶  =  𝐴  ∧  ¬  𝐶  =  𝐵 )  →  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) )  ↔  ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) ) | 
						
							| 33 | 25 32 | imbitrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 )  →  ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) ) ) | 
						
							| 34 | 3 7 33 | 3jcad | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 )  →  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) ) ) ) | 
						
							| 35 |  | simp1 | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) )  →  𝐶  ∈  ℝ* ) | 
						
							| 36 | 35 | a1i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) )  →  𝐶  ∈  ℝ* ) ) | 
						
							| 37 |  | xrleid | ⊢ ( 𝐴  ∈  ℝ*  →  𝐴  ≤  𝐴 ) | 
						
							| 38 | 37 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  𝐴 ) | 
						
							| 39 |  | breq2 | ⊢ ( 𝐶  =  𝐴  →  ( 𝐴  ≤  𝐶  ↔  𝐴  ≤  𝐴 ) ) | 
						
							| 40 | 38 39 | syl5ibrcom | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐶  =  𝐴  →  𝐴  ≤  𝐶 ) ) | 
						
							| 41 |  | xrltle | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐴  <  𝐶  →  𝐴  ≤  𝐶 ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  <  𝐶  →  𝐴  ≤  𝐶 ) ) | 
						
							| 43 | 42 | adantllr | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  <  𝐶  →  𝐴  ≤  𝐶 ) ) | 
						
							| 44 | 43 | adantrd | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  →  𝐴  ≤  𝐶 ) ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 46 |  | breq2 | ⊢ ( 𝐶  =  𝐵  →  ( 𝐴  ≤  𝐶  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 47 | 45 46 | syl5ibrcom | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐶  =  𝐵  →  𝐴  ≤  𝐶 ) ) | 
						
							| 48 | 40 44 47 | 3jaod | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 )  →  𝐴  ≤  𝐶 ) ) | 
						
							| 49 | 48 | exp31 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐶  ∈  ℝ*  →  ( 𝐴  ≤  𝐵  →  ( ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 )  →  𝐴  ≤  𝐶 ) ) ) ) | 
						
							| 50 | 49 | 3impd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) )  →  𝐴  ≤  𝐶 ) ) | 
						
							| 51 |  | breq1 | ⊢ ( 𝐶  =  𝐴  →  ( 𝐶  ≤  𝐵  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 52 | 45 51 | syl5ibrcom | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐶  =  𝐴  →  𝐶  ≤  𝐵 ) ) | 
						
							| 53 |  | xrltle | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐶  <  𝐵  →  𝐶  ≤  𝐵 ) ) | 
						
							| 54 | 53 | ancoms | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐶  <  𝐵  →  𝐶  ≤  𝐵 ) ) | 
						
							| 55 | 54 | adantld | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  →  𝐶  ≤  𝐵 ) ) | 
						
							| 56 | 55 | adantll | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  →  𝐶  ≤  𝐵 ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  →  𝐶  ≤  𝐵 ) ) | 
						
							| 58 |  | xrleid | ⊢ ( 𝐵  ∈  ℝ*  →  𝐵  ≤  𝐵 ) | 
						
							| 59 | 58 | ad3antlr | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  𝐵  ≤  𝐵 ) | 
						
							| 60 |  | breq1 | ⊢ ( 𝐶  =  𝐵  →  ( 𝐶  ≤  𝐵  ↔  𝐵  ≤  𝐵 ) ) | 
						
							| 61 | 59 60 | syl5ibrcom | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐶  =  𝐵  →  𝐶  ≤  𝐵 ) ) | 
						
							| 62 | 52 57 61 | 3jaod | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 )  →  𝐶  ≤  𝐵 ) ) | 
						
							| 63 | 62 | exp31 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐶  ∈  ℝ*  →  ( 𝐴  ≤  𝐵  →  ( ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 )  →  𝐶  ≤  𝐵 ) ) ) ) | 
						
							| 64 | 63 | 3impd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) )  →  𝐶  ≤  𝐵 ) ) | 
						
							| 65 | 36 50 64 | 3jcad | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) )  →  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 66 | 34 65 | impbid | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 )  ↔  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) ) ) ) | 
						
							| 67 | 1 66 | bitrd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝐶  =  𝐴  ∨  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ∨  𝐶  =  𝐵 ) ) ) ) |