| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elicc1 |
|
| 2 |
|
simp1 |
|
| 3 |
2
|
a1i |
|
| 4 |
|
xrletr |
|
| 5 |
4
|
exp5o |
|
| 6 |
5
|
com23 |
|
| 7 |
6
|
imp5q |
|
| 8 |
|
df-ne |
|
| 9 |
|
xrleltne |
|
| 10 |
9
|
biimprd |
|
| 11 |
8 10
|
biimtrrid |
|
| 12 |
11
|
3adant3r3 |
|
| 13 |
12
|
adantlr |
|
| 14 |
|
eqcom |
|
| 15 |
14
|
necon3bbii |
|
| 16 |
|
xrleltne |
|
| 17 |
16
|
biimprd |
|
| 18 |
15 17
|
biimtrid |
|
| 19 |
18
|
3exp |
|
| 20 |
19
|
com12 |
|
| 21 |
20
|
imp32 |
|
| 22 |
21
|
3adantr2 |
|
| 23 |
22
|
adantll |
|
| 24 |
13 23
|
anim12d |
|
| 25 |
24
|
ex |
|
| 26 |
|
df-or |
|
| 27 |
|
3orass |
|
| 28 |
|
pm5.6 |
|
| 29 |
|
orcom |
|
| 30 |
29
|
imbi2i |
|
| 31 |
28 30
|
bitri |
|
| 32 |
26 27 31
|
3bitr4ri |
|
| 33 |
25 32
|
imbitrdi |
|
| 34 |
3 7 33
|
3jcad |
|
| 35 |
|
simp1 |
|
| 36 |
35
|
a1i |
|
| 37 |
|
xrleid |
|
| 38 |
37
|
ad3antrrr |
|
| 39 |
|
breq2 |
|
| 40 |
38 39
|
syl5ibrcom |
|
| 41 |
|
xrltle |
|
| 42 |
41
|
adantr |
|
| 43 |
42
|
adantllr |
|
| 44 |
43
|
adantrd |
|
| 45 |
|
simpr |
|
| 46 |
|
breq2 |
|
| 47 |
45 46
|
syl5ibrcom |
|
| 48 |
40 44 47
|
3jaod |
|
| 49 |
48
|
exp31 |
|
| 50 |
49
|
3impd |
|
| 51 |
|
breq1 |
|
| 52 |
45 51
|
syl5ibrcom |
|
| 53 |
|
xrltle |
|
| 54 |
53
|
ancoms |
|
| 55 |
54
|
adantld |
|
| 56 |
55
|
adantll |
|
| 57 |
56
|
adantr |
|
| 58 |
|
xrleid |
|
| 59 |
58
|
ad3antlr |
|
| 60 |
|
breq1 |
|
| 61 |
59 60
|
syl5ibrcom |
|
| 62 |
52 57 61
|
3jaod |
|
| 63 |
62
|
exp31 |
|
| 64 |
63
|
3impd |
|
| 65 |
36 50 64
|
3jcad |
|
| 66 |
34 65
|
impbid |
|
| 67 |
1 66
|
bitrd |
|