Step |
Hyp |
Ref |
Expression |
1 |
|
finminlem.1 |
|
2 |
|
nfe1 |
|
3 |
|
nfcv |
|
4 |
2 3
|
nfrabw |
|
5 |
|
nfcv |
|
6 |
4 5
|
nfne |
|
7 |
|
isfi |
|
8 |
|
19.8a |
|
9 |
8
|
anim2i |
|
10 |
9
|
3impb |
|
11 |
|
breq2 |
|
12 |
11
|
anbi1d |
|
13 |
12
|
exbidv |
|
14 |
13
|
elrab |
|
15 |
10 14
|
sylibr |
|
16 |
15
|
ne0d |
|
17 |
16
|
3exp |
|
18 |
17
|
rexlimiv |
|
19 |
7 18
|
sylbi |
|
20 |
6 19
|
rexlimi |
|
21 |
|
epweon |
|
22 |
|
ssrab2 |
|
23 |
|
omsson |
|
24 |
22 23
|
sstri |
|
25 |
|
wefrc |
|
26 |
21 24 25
|
mp3an12 |
|
27 |
|
nfv |
|
28 |
|
nfcv |
|
29 |
4 28
|
nfin |
|
30 |
29
|
nfeq1 |
|
31 |
27 30
|
nfan |
|
32 |
|
simprr |
|
33 |
|
sspss |
|
34 |
|
rspe |
|
35 |
|
pssss |
|
36 |
|
ssfi |
|
37 |
35 36
|
sylan2 |
|
38 |
37
|
ex |
|
39 |
7 38
|
sylbir |
|
40 |
34 39
|
syl |
|
41 |
40
|
adantrr |
|
42 |
41
|
adantrr |
|
43 |
|
isfi |
|
44 |
|
simprll |
|
45 |
|
simprlr |
|
46 |
|
simplrr |
|
47 |
|
vex |
|
48 |
|
breq1 |
|
49 |
48 1
|
anbi12d |
|
50 |
47 49
|
spcev |
|
51 |
45 46 50
|
syl2anc |
|
52 |
34 7
|
sylibr |
|
53 |
52
|
adantrr |
|
54 |
53
|
adantrr |
|
55 |
54
|
adantr |
|
56 |
|
php3 |
|
57 |
56
|
ex |
|
58 |
55 57
|
syl |
|
59 |
|
vex |
|
60 |
|
ssdomg |
|
61 |
59 60
|
ax-mp |
|
62 |
|
endomtr |
|
63 |
62
|
ex |
|
64 |
63
|
ad2antrr |
|
65 |
64
|
ad2antlr |
|
66 |
|
ensym |
|
67 |
|
domentr |
|
68 |
66 67
|
sylan2 |
|
69 |
68
|
expcom |
|
70 |
69
|
ad2antll |
|
71 |
65 70
|
syld |
|
72 |
61 71
|
syl5 |
|
73 |
|
domnsym |
|
74 |
73
|
con2i |
|
75 |
72 74
|
nsyli |
|
76 |
58 75
|
syld |
|
77 |
76
|
impr |
|
78 |
|
nnord |
|
79 |
78
|
ad2antrr |
|
80 |
|
nnord |
|
81 |
80
|
adantr |
|
82 |
81
|
ad2antrl |
|
83 |
|
ordtri1 |
|
84 |
83
|
con2bid |
|
85 |
79 82 84
|
syl2anc |
|
86 |
77 85
|
mpbird |
|
87 |
44 51 86
|
jca31 |
|
88 |
|
elin |
|
89 |
|
breq2 |
|
90 |
89
|
anbi1d |
|
91 |
90
|
exbidv |
|
92 |
91
|
elrab |
|
93 |
92
|
anbi1i |
|
94 |
88 93
|
bitri |
|
95 |
87 94
|
sylibr |
|
96 |
95
|
ne0d |
|
97 |
96
|
exp44 |
|
98 |
97
|
rexlimdv |
|
99 |
43 98
|
syl5bi |
|
100 |
99
|
com23 |
|
101 |
42 100
|
mpdd |
|
102 |
101
|
necon2bd |
|
103 |
102
|
ex |
|
104 |
103
|
com23 |
|
105 |
104
|
imp31 |
|
106 |
105
|
pm2.21d |
|
107 |
|
equcomi |
|
108 |
107
|
a1i |
|
109 |
106 108
|
jaod |
|
110 |
33 109
|
syl5bi |
|
111 |
110
|
expr |
|
112 |
111
|
com23 |
|
113 |
112
|
impd |
|
114 |
113
|
alrimiv |
|
115 |
32 114
|
jca |
|
116 |
115
|
ex |
|
117 |
31 116
|
eximd |
|
118 |
117
|
impancom |
|
119 |
14 118
|
sylbi |
|
120 |
119
|
rexlimiv |
|
121 |
20 26 120
|
3syl |
|