Step |
Hyp |
Ref |
Expression |
1 |
|
finminlem.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
nfe1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 ω |
4 |
2 3
|
nfrabw |
⊢ Ⅎ 𝑥 { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 ∅ |
6 |
4 5
|
nfne |
⊢ Ⅎ 𝑥 { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ≠ ∅ |
7 |
|
isfi |
⊢ ( 𝑥 ∈ Fin ↔ ∃ 𝑚 ∈ ω 𝑥 ≈ 𝑚 ) |
8 |
|
19.8a |
⊢ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) → ∃ 𝑥 ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) |
9 |
8
|
anim2i |
⊢ ( ( 𝑚 ∈ ω ∧ ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) → ( 𝑚 ∈ ω ∧ ∃ 𝑥 ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) ) |
10 |
9
|
3impb |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 ≈ 𝑚 ∧ 𝜑 ) → ( 𝑚 ∈ ω ∧ ∃ 𝑥 ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) ) |
11 |
|
breq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ≈ 𝑛 ↔ 𝑥 ≈ 𝑚 ) ) |
12 |
11
|
anbi1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) ↔ ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) ) |
13 |
12
|
exbidv |
⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) ) |
14 |
13
|
elrab |
⊢ ( 𝑚 ∈ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ↔ ( 𝑚 ∈ ω ∧ ∃ 𝑥 ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) ) |
15 |
10 14
|
sylibr |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 ≈ 𝑚 ∧ 𝜑 ) → 𝑚 ∈ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ) |
16 |
15
|
ne0d |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 ≈ 𝑚 ∧ 𝜑 ) → { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ≠ ∅ ) |
17 |
16
|
3exp |
⊢ ( 𝑚 ∈ ω → ( 𝑥 ≈ 𝑚 → ( 𝜑 → { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ≠ ∅ ) ) ) |
18 |
17
|
rexlimiv |
⊢ ( ∃ 𝑚 ∈ ω 𝑥 ≈ 𝑚 → ( 𝜑 → { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ≠ ∅ ) ) |
19 |
7 18
|
sylbi |
⊢ ( 𝑥 ∈ Fin → ( 𝜑 → { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ≠ ∅ ) ) |
20 |
6 19
|
rexlimi |
⊢ ( ∃ 𝑥 ∈ Fin 𝜑 → { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ≠ ∅ ) |
21 |
|
epweon |
⊢ E We On |
22 |
|
ssrab2 |
⊢ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ⊆ ω |
23 |
|
omsson |
⊢ ω ⊆ On |
24 |
22 23
|
sstri |
⊢ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ⊆ On |
25 |
|
wefrc |
⊢ ( ( E We On ∧ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ⊆ On ∧ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ≠ ∅ ) → ∃ 𝑚 ∈ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) |
26 |
21 24 25
|
mp3an12 |
⊢ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ≠ ∅ → ∃ 𝑚 ∈ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) |
27 |
|
nfv |
⊢ Ⅎ 𝑥 𝑚 ∈ ω |
28 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
29 |
4 28
|
nfin |
⊢ Ⅎ 𝑥 ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) |
30 |
29
|
nfeq1 |
⊢ Ⅎ 𝑥 ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ |
31 |
27 30
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) |
32 |
|
simprr |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) → 𝜑 ) |
33 |
|
sspss |
⊢ ( 𝑦 ⊆ 𝑥 ↔ ( 𝑦 ⊊ 𝑥 ∨ 𝑦 = 𝑥 ) ) |
34 |
|
rspe |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 ≈ 𝑚 ) → ∃ 𝑚 ∈ ω 𝑥 ≈ 𝑚 ) |
35 |
|
pssss |
⊢ ( 𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥 ) |
36 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ∈ Fin ) |
37 |
35 36
|
sylan2 |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝑦 ⊊ 𝑥 ) → 𝑦 ∈ Fin ) |
38 |
37
|
ex |
⊢ ( 𝑥 ∈ Fin → ( 𝑦 ⊊ 𝑥 → 𝑦 ∈ Fin ) ) |
39 |
7 38
|
sylbir |
⊢ ( ∃ 𝑚 ∈ ω 𝑥 ≈ 𝑚 → ( 𝑦 ⊊ 𝑥 → 𝑦 ∈ Fin ) ) |
40 |
34 39
|
syl |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 ≈ 𝑚 ) → ( 𝑦 ⊊ 𝑥 → 𝑦 ∈ Fin ) ) |
41 |
40
|
adantrr |
⊢ ( ( 𝑚 ∈ ω ∧ ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) → ( 𝑦 ⊊ 𝑥 → 𝑦 ∈ Fin ) ) |
42 |
41
|
adantrr |
⊢ ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( 𝑦 ⊊ 𝑥 → 𝑦 ∈ Fin ) ) |
43 |
|
isfi |
⊢ ( 𝑦 ∈ Fin ↔ ∃ 𝑘 ∈ ω 𝑦 ≈ 𝑘 ) |
44 |
|
simprll |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → 𝑘 ∈ ω ) |
45 |
|
simprlr |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → 𝑦 ≈ 𝑘 ) |
46 |
|
simplrr |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → 𝜓 ) |
47 |
|
vex |
⊢ 𝑦 ∈ V |
48 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝑘 ↔ 𝑦 ≈ 𝑘 ) ) |
49 |
48 1
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≈ 𝑘 ∧ 𝜑 ) ↔ ( 𝑦 ≈ 𝑘 ∧ 𝜓 ) ) ) |
50 |
47 49
|
spcev |
⊢ ( ( 𝑦 ≈ 𝑘 ∧ 𝜓 ) → ∃ 𝑥 ( 𝑥 ≈ 𝑘 ∧ 𝜑 ) ) |
51 |
45 46 50
|
syl2anc |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → ∃ 𝑥 ( 𝑥 ≈ 𝑘 ∧ 𝜑 ) ) |
52 |
34 7
|
sylibr |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 ≈ 𝑚 ) → 𝑥 ∈ Fin ) |
53 |
52
|
adantrr |
⊢ ( ( 𝑚 ∈ ω ∧ ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) → 𝑥 ∈ Fin ) |
54 |
53
|
adantrr |
⊢ ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → 𝑥 ∈ Fin ) |
55 |
54
|
adantr |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ) → 𝑥 ∈ Fin ) |
56 |
|
php3 |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝑦 ⊊ 𝑥 ) → 𝑦 ≺ 𝑥 ) |
57 |
56
|
ex |
⊢ ( 𝑥 ∈ Fin → ( 𝑦 ⊊ 𝑥 → 𝑦 ≺ 𝑥 ) ) |
58 |
55 57
|
syl |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ) → ( 𝑦 ⊊ 𝑥 → 𝑦 ≺ 𝑥 ) ) |
59 |
|
vex |
⊢ 𝑘 ∈ V |
60 |
|
ssdomg |
⊢ ( 𝑘 ∈ V → ( 𝑚 ⊆ 𝑘 → 𝑚 ≼ 𝑘 ) ) |
61 |
59 60
|
ax-mp |
⊢ ( 𝑚 ⊆ 𝑘 → 𝑚 ≼ 𝑘 ) |
62 |
|
endomtr |
⊢ ( ( 𝑥 ≈ 𝑚 ∧ 𝑚 ≼ 𝑘 ) → 𝑥 ≼ 𝑘 ) |
63 |
62
|
ex |
⊢ ( 𝑥 ≈ 𝑚 → ( 𝑚 ≼ 𝑘 → 𝑥 ≼ 𝑘 ) ) |
64 |
63
|
ad2antrr |
⊢ ( ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) → ( 𝑚 ≼ 𝑘 → 𝑥 ≼ 𝑘 ) ) |
65 |
64
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ) → ( 𝑚 ≼ 𝑘 → 𝑥 ≼ 𝑘 ) ) |
66 |
|
ensym |
⊢ ( 𝑦 ≈ 𝑘 → 𝑘 ≈ 𝑦 ) |
67 |
|
domentr |
⊢ ( ( 𝑥 ≼ 𝑘 ∧ 𝑘 ≈ 𝑦 ) → 𝑥 ≼ 𝑦 ) |
68 |
66 67
|
sylan2 |
⊢ ( ( 𝑥 ≼ 𝑘 ∧ 𝑦 ≈ 𝑘 ) → 𝑥 ≼ 𝑦 ) |
69 |
68
|
expcom |
⊢ ( 𝑦 ≈ 𝑘 → ( 𝑥 ≼ 𝑘 → 𝑥 ≼ 𝑦 ) ) |
70 |
69
|
ad2antll |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ) → ( 𝑥 ≼ 𝑘 → 𝑥 ≼ 𝑦 ) ) |
71 |
65 70
|
syld |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ) → ( 𝑚 ≼ 𝑘 → 𝑥 ≼ 𝑦 ) ) |
72 |
61 71
|
syl5 |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ) → ( 𝑚 ⊆ 𝑘 → 𝑥 ≼ 𝑦 ) ) |
73 |
|
domnsym |
⊢ ( 𝑥 ≼ 𝑦 → ¬ 𝑦 ≺ 𝑥 ) |
74 |
73
|
con2i |
⊢ ( 𝑦 ≺ 𝑥 → ¬ 𝑥 ≼ 𝑦 ) |
75 |
72 74
|
nsyli |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ) → ( 𝑦 ≺ 𝑥 → ¬ 𝑚 ⊆ 𝑘 ) ) |
76 |
58 75
|
syld |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ) → ( 𝑦 ⊊ 𝑥 → ¬ 𝑚 ⊆ 𝑘 ) ) |
77 |
76
|
impr |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → ¬ 𝑚 ⊆ 𝑘 ) |
78 |
|
nnord |
⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → Ord 𝑚 ) |
80 |
|
nnord |
⊢ ( 𝑘 ∈ ω → Ord 𝑘 ) |
81 |
80
|
adantr |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) → Ord 𝑘 ) |
82 |
81
|
ad2antrl |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → Ord 𝑘 ) |
83 |
|
ordtri1 |
⊢ ( ( Ord 𝑚 ∧ Ord 𝑘 ) → ( 𝑚 ⊆ 𝑘 ↔ ¬ 𝑘 ∈ 𝑚 ) ) |
84 |
83
|
con2bid |
⊢ ( ( Ord 𝑚 ∧ Ord 𝑘 ) → ( 𝑘 ∈ 𝑚 ↔ ¬ 𝑚 ⊆ 𝑘 ) ) |
85 |
79 82 84
|
syl2anc |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → ( 𝑘 ∈ 𝑚 ↔ ¬ 𝑚 ⊆ 𝑘 ) ) |
86 |
77 85
|
mpbird |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → 𝑘 ∈ 𝑚 ) |
87 |
44 51 86
|
jca31 |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → ( ( 𝑘 ∈ ω ∧ ∃ 𝑥 ( 𝑥 ≈ 𝑘 ∧ 𝜑 ) ) ∧ 𝑘 ∈ 𝑚 ) ) |
88 |
|
elin |
⊢ ( 𝑘 ∈ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) ↔ ( 𝑘 ∈ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∧ 𝑘 ∈ 𝑚 ) ) |
89 |
|
breq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ≈ 𝑛 ↔ 𝑥 ≈ 𝑘 ) ) |
90 |
89
|
anbi1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) ↔ ( 𝑥 ≈ 𝑘 ∧ 𝜑 ) ) ) |
91 |
90
|
exbidv |
⊢ ( 𝑛 = 𝑘 → ( ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ≈ 𝑘 ∧ 𝜑 ) ) ) |
92 |
91
|
elrab |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ↔ ( 𝑘 ∈ ω ∧ ∃ 𝑥 ( 𝑥 ≈ 𝑘 ∧ 𝜑 ) ) ) |
93 |
92
|
anbi1i |
⊢ ( ( 𝑘 ∈ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∧ 𝑘 ∈ 𝑚 ) ↔ ( ( 𝑘 ∈ ω ∧ ∃ 𝑥 ( 𝑥 ≈ 𝑘 ∧ 𝜑 ) ) ∧ 𝑘 ∈ 𝑚 ) ) |
94 |
88 93
|
bitri |
⊢ ( 𝑘 ∈ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) ↔ ( ( 𝑘 ∈ ω ∧ ∃ 𝑥 ( 𝑥 ≈ 𝑘 ∧ 𝜑 ) ) ∧ 𝑘 ∈ 𝑚 ) ) |
95 |
87 94
|
sylibr |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → 𝑘 ∈ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) ) |
96 |
95
|
ne0d |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) ∧ ( ( 𝑘 ∈ ω ∧ 𝑦 ≈ 𝑘 ) ∧ 𝑦 ⊊ 𝑥 ) ) → ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) ≠ ∅ ) |
97 |
96
|
exp44 |
⊢ ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( 𝑘 ∈ ω → ( 𝑦 ≈ 𝑘 → ( 𝑦 ⊊ 𝑥 → ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) ≠ ∅ ) ) ) ) |
98 |
97
|
rexlimdv |
⊢ ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( ∃ 𝑘 ∈ ω 𝑦 ≈ 𝑘 → ( 𝑦 ⊊ 𝑥 → ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) ≠ ∅ ) ) ) |
99 |
43 98
|
syl5bi |
⊢ ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( 𝑦 ∈ Fin → ( 𝑦 ⊊ 𝑥 → ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) ≠ ∅ ) ) ) |
100 |
99
|
com23 |
⊢ ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( 𝑦 ⊊ 𝑥 → ( 𝑦 ∈ Fin → ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) ≠ ∅ ) ) ) |
101 |
42 100
|
mpdd |
⊢ ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( 𝑦 ⊊ 𝑥 → ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) ≠ ∅ ) ) |
102 |
101
|
necon2bd |
⊢ ( ( 𝑚 ∈ ω ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ → ¬ 𝑦 ⊊ 𝑥 ) ) |
103 |
102
|
ex |
⊢ ( 𝑚 ∈ ω → ( ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) → ( ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ → ¬ 𝑦 ⊊ 𝑥 ) ) ) |
104 |
103
|
com23 |
⊢ ( 𝑚 ∈ ω → ( ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ → ( ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) → ¬ 𝑦 ⊊ 𝑥 ) ) ) |
105 |
104
|
imp31 |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ¬ 𝑦 ⊊ 𝑥 ) |
106 |
105
|
pm2.21d |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( 𝑦 ⊊ 𝑥 → 𝑥 = 𝑦 ) ) |
107 |
|
equcomi |
⊢ ( 𝑦 = 𝑥 → 𝑥 = 𝑦 ) |
108 |
107
|
a1i |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( 𝑦 = 𝑥 → 𝑥 = 𝑦 ) ) |
109 |
106 108
|
jaod |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( ( 𝑦 ⊊ 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑥 = 𝑦 ) ) |
110 |
33 109
|
syl5bi |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( 𝑦 ⊆ 𝑥 → 𝑥 = 𝑦 ) ) |
111 |
110
|
expr |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) → ( 𝜓 → ( 𝑦 ⊆ 𝑥 → 𝑥 = 𝑦 ) ) ) |
112 |
111
|
com23 |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) → ( 𝑦 ⊆ 𝑥 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
113 |
112
|
impd |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) → ( ( 𝑦 ⊆ 𝑥 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
114 |
113
|
alrimiv |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) → ∀ 𝑦 ( ( 𝑦 ⊆ 𝑥 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
115 |
32 114
|
jca |
⊢ ( ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) ∧ ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) → ( 𝜑 ∧ ∀ 𝑦 ( ( 𝑦 ⊆ 𝑥 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
116 |
115
|
ex |
⊢ ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) → ( ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) → ( 𝜑 ∧ ∀ 𝑦 ( ( 𝑦 ⊆ 𝑥 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) ) |
117 |
31 116
|
eximd |
⊢ ( ( 𝑚 ∈ ω ∧ ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ ) → ( ∃ 𝑥 ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ( ( 𝑦 ⊆ 𝑥 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) ) |
118 |
117
|
impancom |
⊢ ( ( 𝑚 ∈ ω ∧ ∃ 𝑥 ( 𝑥 ≈ 𝑚 ∧ 𝜑 ) ) → ( ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ( ( 𝑦 ⊆ 𝑥 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) ) |
119 |
14 118
|
sylbi |
⊢ ( 𝑚 ∈ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } → ( ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ( ( 𝑦 ⊆ 𝑥 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) ) |
120 |
119
|
rexlimiv |
⊢ ( ∃ 𝑚 ∈ { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ( { 𝑛 ∈ ω ∣ ∃ 𝑥 ( 𝑥 ≈ 𝑛 ∧ 𝜑 ) } ∩ 𝑚 ) = ∅ → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ( ( 𝑦 ⊆ 𝑥 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
121 |
20 26 120
|
3syl |
⊢ ( ∃ 𝑥 ∈ Fin 𝜑 → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ( ( 𝑦 ⊆ 𝑥 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |