Step |
Hyp |
Ref |
Expression |
1 |
|
finminlem.1 |
|- ( x = y -> ( ph <-> ps ) ) |
2 |
|
nfe1 |
|- F/ x E. x ( x ~~ n /\ ph ) |
3 |
|
nfcv |
|- F/_ x _om |
4 |
2 3
|
nfrabw |
|- F/_ x { n e. _om | E. x ( x ~~ n /\ ph ) } |
5 |
|
nfcv |
|- F/_ x (/) |
6 |
4 5
|
nfne |
|- F/ x { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) |
7 |
|
isfi |
|- ( x e. Fin <-> E. m e. _om x ~~ m ) |
8 |
|
19.8a |
|- ( ( x ~~ m /\ ph ) -> E. x ( x ~~ m /\ ph ) ) |
9 |
8
|
anim2i |
|- ( ( m e. _om /\ ( x ~~ m /\ ph ) ) -> ( m e. _om /\ E. x ( x ~~ m /\ ph ) ) ) |
10 |
9
|
3impb |
|- ( ( m e. _om /\ x ~~ m /\ ph ) -> ( m e. _om /\ E. x ( x ~~ m /\ ph ) ) ) |
11 |
|
breq2 |
|- ( n = m -> ( x ~~ n <-> x ~~ m ) ) |
12 |
11
|
anbi1d |
|- ( n = m -> ( ( x ~~ n /\ ph ) <-> ( x ~~ m /\ ph ) ) ) |
13 |
12
|
exbidv |
|- ( n = m -> ( E. x ( x ~~ n /\ ph ) <-> E. x ( x ~~ m /\ ph ) ) ) |
14 |
13
|
elrab |
|- ( m e. { n e. _om | E. x ( x ~~ n /\ ph ) } <-> ( m e. _om /\ E. x ( x ~~ m /\ ph ) ) ) |
15 |
10 14
|
sylibr |
|- ( ( m e. _om /\ x ~~ m /\ ph ) -> m e. { n e. _om | E. x ( x ~~ n /\ ph ) } ) |
16 |
15
|
ne0d |
|- ( ( m e. _om /\ x ~~ m /\ ph ) -> { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) |
17 |
16
|
3exp |
|- ( m e. _om -> ( x ~~ m -> ( ph -> { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) ) ) |
18 |
17
|
rexlimiv |
|- ( E. m e. _om x ~~ m -> ( ph -> { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) ) |
19 |
7 18
|
sylbi |
|- ( x e. Fin -> ( ph -> { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) ) |
20 |
6 19
|
rexlimi |
|- ( E. x e. Fin ph -> { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) |
21 |
|
epweon |
|- _E We On |
22 |
|
ssrab2 |
|- { n e. _om | E. x ( x ~~ n /\ ph ) } C_ _om |
23 |
|
omsson |
|- _om C_ On |
24 |
22 23
|
sstri |
|- { n e. _om | E. x ( x ~~ n /\ ph ) } C_ On |
25 |
|
wefrc |
|- ( ( _E We On /\ { n e. _om | E. x ( x ~~ n /\ ph ) } C_ On /\ { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) -> E. m e. { n e. _om | E. x ( x ~~ n /\ ph ) } ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) |
26 |
21 24 25
|
mp3an12 |
|- ( { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) -> E. m e. { n e. _om | E. x ( x ~~ n /\ ph ) } ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) |
27 |
|
nfv |
|- F/ x m e. _om |
28 |
|
nfcv |
|- F/_ x m |
29 |
4 28
|
nfin |
|- F/_ x ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) |
30 |
29
|
nfeq1 |
|- F/ x ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) |
31 |
27 30
|
nfan |
|- F/ x ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) |
32 |
|
simprr |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> ph ) |
33 |
|
sspss |
|- ( y C_ x <-> ( y C. x \/ y = x ) ) |
34 |
|
rspe |
|- ( ( m e. _om /\ x ~~ m ) -> E. m e. _om x ~~ m ) |
35 |
|
pssss |
|- ( y C. x -> y C_ x ) |
36 |
|
ssfi |
|- ( ( x e. Fin /\ y C_ x ) -> y e. Fin ) |
37 |
35 36
|
sylan2 |
|- ( ( x e. Fin /\ y C. x ) -> y e. Fin ) |
38 |
37
|
ex |
|- ( x e. Fin -> ( y C. x -> y e. Fin ) ) |
39 |
7 38
|
sylbir |
|- ( E. m e. _om x ~~ m -> ( y C. x -> y e. Fin ) ) |
40 |
34 39
|
syl |
|- ( ( m e. _om /\ x ~~ m ) -> ( y C. x -> y e. Fin ) ) |
41 |
40
|
adantrr |
|- ( ( m e. _om /\ ( x ~~ m /\ ph ) ) -> ( y C. x -> y e. Fin ) ) |
42 |
41
|
adantrr |
|- ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y C. x -> y e. Fin ) ) |
43 |
|
isfi |
|- ( y e. Fin <-> E. k e. _om y ~~ k ) |
44 |
|
simprll |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> k e. _om ) |
45 |
|
simprlr |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> y ~~ k ) |
46 |
|
simplrr |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> ps ) |
47 |
|
vex |
|- y e. _V |
48 |
|
breq1 |
|- ( x = y -> ( x ~~ k <-> y ~~ k ) ) |
49 |
48 1
|
anbi12d |
|- ( x = y -> ( ( x ~~ k /\ ph ) <-> ( y ~~ k /\ ps ) ) ) |
50 |
47 49
|
spcev |
|- ( ( y ~~ k /\ ps ) -> E. x ( x ~~ k /\ ph ) ) |
51 |
45 46 50
|
syl2anc |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> E. x ( x ~~ k /\ ph ) ) |
52 |
34 7
|
sylibr |
|- ( ( m e. _om /\ x ~~ m ) -> x e. Fin ) |
53 |
52
|
adantrr |
|- ( ( m e. _om /\ ( x ~~ m /\ ph ) ) -> x e. Fin ) |
54 |
53
|
adantrr |
|- ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> x e. Fin ) |
55 |
54
|
adantr |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> x e. Fin ) |
56 |
|
php3 |
|- ( ( x e. Fin /\ y C. x ) -> y ~< x ) |
57 |
56
|
ex |
|- ( x e. Fin -> ( y C. x -> y ~< x ) ) |
58 |
55 57
|
syl |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( y C. x -> y ~< x ) ) |
59 |
|
vex |
|- k e. _V |
60 |
|
ssdomg |
|- ( k e. _V -> ( m C_ k -> m ~<_ k ) ) |
61 |
59 60
|
ax-mp |
|- ( m C_ k -> m ~<_ k ) |
62 |
|
endomtr |
|- ( ( x ~~ m /\ m ~<_ k ) -> x ~<_ k ) |
63 |
62
|
ex |
|- ( x ~~ m -> ( m ~<_ k -> x ~<_ k ) ) |
64 |
63
|
ad2antrr |
|- ( ( ( x ~~ m /\ ph ) /\ ps ) -> ( m ~<_ k -> x ~<_ k ) ) |
65 |
64
|
ad2antlr |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( m ~<_ k -> x ~<_ k ) ) |
66 |
|
ensym |
|- ( y ~~ k -> k ~~ y ) |
67 |
|
domentr |
|- ( ( x ~<_ k /\ k ~~ y ) -> x ~<_ y ) |
68 |
66 67
|
sylan2 |
|- ( ( x ~<_ k /\ y ~~ k ) -> x ~<_ y ) |
69 |
68
|
expcom |
|- ( y ~~ k -> ( x ~<_ k -> x ~<_ y ) ) |
70 |
69
|
ad2antll |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( x ~<_ k -> x ~<_ y ) ) |
71 |
65 70
|
syld |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( m ~<_ k -> x ~<_ y ) ) |
72 |
61 71
|
syl5 |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( m C_ k -> x ~<_ y ) ) |
73 |
|
domnsym |
|- ( x ~<_ y -> -. y ~< x ) |
74 |
73
|
con2i |
|- ( y ~< x -> -. x ~<_ y ) |
75 |
72 74
|
nsyli |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( y ~< x -> -. m C_ k ) ) |
76 |
58 75
|
syld |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( y C. x -> -. m C_ k ) ) |
77 |
76
|
impr |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> -. m C_ k ) |
78 |
|
nnord |
|- ( m e. _om -> Ord m ) |
79 |
78
|
ad2antrr |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> Ord m ) |
80 |
|
nnord |
|- ( k e. _om -> Ord k ) |
81 |
80
|
adantr |
|- ( ( k e. _om /\ y ~~ k ) -> Ord k ) |
82 |
81
|
ad2antrl |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> Ord k ) |
83 |
|
ordtri1 |
|- ( ( Ord m /\ Ord k ) -> ( m C_ k <-> -. k e. m ) ) |
84 |
83
|
con2bid |
|- ( ( Ord m /\ Ord k ) -> ( k e. m <-> -. m C_ k ) ) |
85 |
79 82 84
|
syl2anc |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> ( k e. m <-> -. m C_ k ) ) |
86 |
77 85
|
mpbird |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> k e. m ) |
87 |
44 51 86
|
jca31 |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> ( ( k e. _om /\ E. x ( x ~~ k /\ ph ) ) /\ k e. m ) ) |
88 |
|
elin |
|- ( k e. ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) <-> ( k e. { n e. _om | E. x ( x ~~ n /\ ph ) } /\ k e. m ) ) |
89 |
|
breq2 |
|- ( n = k -> ( x ~~ n <-> x ~~ k ) ) |
90 |
89
|
anbi1d |
|- ( n = k -> ( ( x ~~ n /\ ph ) <-> ( x ~~ k /\ ph ) ) ) |
91 |
90
|
exbidv |
|- ( n = k -> ( E. x ( x ~~ n /\ ph ) <-> E. x ( x ~~ k /\ ph ) ) ) |
92 |
91
|
elrab |
|- ( k e. { n e. _om | E. x ( x ~~ n /\ ph ) } <-> ( k e. _om /\ E. x ( x ~~ k /\ ph ) ) ) |
93 |
92
|
anbi1i |
|- ( ( k e. { n e. _om | E. x ( x ~~ n /\ ph ) } /\ k e. m ) <-> ( ( k e. _om /\ E. x ( x ~~ k /\ ph ) ) /\ k e. m ) ) |
94 |
88 93
|
bitri |
|- ( k e. ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) <-> ( ( k e. _om /\ E. x ( x ~~ k /\ ph ) ) /\ k e. m ) ) |
95 |
87 94
|
sylibr |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> k e. ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) ) |
96 |
95
|
ne0d |
|- ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) |
97 |
96
|
exp44 |
|- ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( k e. _om -> ( y ~~ k -> ( y C. x -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) ) ) ) |
98 |
97
|
rexlimdv |
|- ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( E. k e. _om y ~~ k -> ( y C. x -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) ) ) |
99 |
43 98
|
syl5bi |
|- ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y e. Fin -> ( y C. x -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) ) ) |
100 |
99
|
com23 |
|- ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y C. x -> ( y e. Fin -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) ) ) |
101 |
42 100
|
mpdd |
|- ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y C. x -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) ) |
102 |
101
|
necon2bd |
|- ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> -. y C. x ) ) |
103 |
102
|
ex |
|- ( m e. _om -> ( ( ( x ~~ m /\ ph ) /\ ps ) -> ( ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> -. y C. x ) ) ) |
104 |
103
|
com23 |
|- ( m e. _om -> ( ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> ( ( ( x ~~ m /\ ph ) /\ ps ) -> -. y C. x ) ) ) |
105 |
104
|
imp31 |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> -. y C. x ) |
106 |
105
|
pm2.21d |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y C. x -> x = y ) ) |
107 |
|
equcomi |
|- ( y = x -> x = y ) |
108 |
107
|
a1i |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y = x -> x = y ) ) |
109 |
106 108
|
jaod |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( ( y C. x \/ y = x ) -> x = y ) ) |
110 |
33 109
|
syl5bi |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y C_ x -> x = y ) ) |
111 |
110
|
expr |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> ( ps -> ( y C_ x -> x = y ) ) ) |
112 |
111
|
com23 |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> ( y C_ x -> ( ps -> x = y ) ) ) |
113 |
112
|
impd |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> ( ( y C_ x /\ ps ) -> x = y ) ) |
114 |
113
|
alrimiv |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> A. y ( ( y C_ x /\ ps ) -> x = y ) ) |
115 |
32 114
|
jca |
|- ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) |
116 |
115
|
ex |
|- ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) -> ( ( x ~~ m /\ ph ) -> ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) ) |
117 |
31 116
|
eximd |
|- ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) -> ( E. x ( x ~~ m /\ ph ) -> E. x ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) ) |
118 |
117
|
impancom |
|- ( ( m e. _om /\ E. x ( x ~~ m /\ ph ) ) -> ( ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> E. x ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) ) |
119 |
14 118
|
sylbi |
|- ( m e. { n e. _om | E. x ( x ~~ n /\ ph ) } -> ( ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> E. x ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) ) |
120 |
119
|
rexlimiv |
|- ( E. m e. { n e. _om | E. x ( x ~~ n /\ ph ) } ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> E. x ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) |
121 |
20 26 120
|
3syl |
|- ( E. x e. Fin ph -> E. x ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) |