| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finminlem.1 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 2 |  | nfe1 |  |-  F/ x E. x ( x ~~ n /\ ph ) | 
						
							| 3 |  | nfcv |  |-  F/_ x _om | 
						
							| 4 | 2 3 | nfrabw |  |-  F/_ x { n e. _om | E. x ( x ~~ n /\ ph ) } | 
						
							| 5 |  | nfcv |  |-  F/_ x (/) | 
						
							| 6 | 4 5 | nfne |  |-  F/ x { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) | 
						
							| 7 |  | isfi |  |-  ( x e. Fin <-> E. m e. _om x ~~ m ) | 
						
							| 8 |  | 19.8a |  |-  ( ( x ~~ m /\ ph ) -> E. x ( x ~~ m /\ ph ) ) | 
						
							| 9 | 8 | anim2i |  |-  ( ( m e. _om /\ ( x ~~ m /\ ph ) ) -> ( m e. _om /\ E. x ( x ~~ m /\ ph ) ) ) | 
						
							| 10 | 9 | 3impb |  |-  ( ( m e. _om /\ x ~~ m /\ ph ) -> ( m e. _om /\ E. x ( x ~~ m /\ ph ) ) ) | 
						
							| 11 |  | breq2 |  |-  ( n = m -> ( x ~~ n <-> x ~~ m ) ) | 
						
							| 12 | 11 | anbi1d |  |-  ( n = m -> ( ( x ~~ n /\ ph ) <-> ( x ~~ m /\ ph ) ) ) | 
						
							| 13 | 12 | exbidv |  |-  ( n = m -> ( E. x ( x ~~ n /\ ph ) <-> E. x ( x ~~ m /\ ph ) ) ) | 
						
							| 14 | 13 | elrab |  |-  ( m e. { n e. _om | E. x ( x ~~ n /\ ph ) } <-> ( m e. _om /\ E. x ( x ~~ m /\ ph ) ) ) | 
						
							| 15 | 10 14 | sylibr |  |-  ( ( m e. _om /\ x ~~ m /\ ph ) -> m e. { n e. _om | E. x ( x ~~ n /\ ph ) } ) | 
						
							| 16 | 15 | ne0d |  |-  ( ( m e. _om /\ x ~~ m /\ ph ) -> { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) | 
						
							| 17 | 16 | 3exp |  |-  ( m e. _om -> ( x ~~ m -> ( ph -> { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) ) ) | 
						
							| 18 | 17 | rexlimiv |  |-  ( E. m e. _om x ~~ m -> ( ph -> { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) ) | 
						
							| 19 | 7 18 | sylbi |  |-  ( x e. Fin -> ( ph -> { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) ) | 
						
							| 20 | 6 19 | rexlimi |  |-  ( E. x e. Fin ph -> { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) | 
						
							| 21 |  | epweon |  |-  _E We On | 
						
							| 22 |  | ssrab2 |  |-  { n e. _om | E. x ( x ~~ n /\ ph ) } C_ _om | 
						
							| 23 |  | omsson |  |-  _om C_ On | 
						
							| 24 | 22 23 | sstri |  |-  { n e. _om | E. x ( x ~~ n /\ ph ) } C_ On | 
						
							| 25 |  | wefrc |  |-  ( ( _E We On /\ { n e. _om | E. x ( x ~~ n /\ ph ) } C_ On /\ { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) ) -> E. m e. { n e. _om | E. x ( x ~~ n /\ ph ) } ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) | 
						
							| 26 | 21 24 25 | mp3an12 |  |-  ( { n e. _om | E. x ( x ~~ n /\ ph ) } =/= (/) -> E. m e. { n e. _om | E. x ( x ~~ n /\ ph ) } ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) | 
						
							| 27 |  | nfv |  |-  F/ x m e. _om | 
						
							| 28 |  | nfcv |  |-  F/_ x m | 
						
							| 29 | 4 28 | nfin |  |-  F/_ x ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) | 
						
							| 30 | 29 | nfeq1 |  |-  F/ x ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) | 
						
							| 31 | 27 30 | nfan |  |-  F/ x ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) | 
						
							| 32 |  | simprr |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> ph ) | 
						
							| 33 |  | sspss |  |-  ( y C_ x <-> ( y C. x \/ y = x ) ) | 
						
							| 34 |  | rspe |  |-  ( ( m e. _om /\ x ~~ m ) -> E. m e. _om x ~~ m ) | 
						
							| 35 |  | pssss |  |-  ( y C. x -> y C_ x ) | 
						
							| 36 |  | ssfi |  |-  ( ( x e. Fin /\ y C_ x ) -> y e. Fin ) | 
						
							| 37 | 35 36 | sylan2 |  |-  ( ( x e. Fin /\ y C. x ) -> y e. Fin ) | 
						
							| 38 | 37 | ex |  |-  ( x e. Fin -> ( y C. x -> y e. Fin ) ) | 
						
							| 39 | 7 38 | sylbir |  |-  ( E. m e. _om x ~~ m -> ( y C. x -> y e. Fin ) ) | 
						
							| 40 | 34 39 | syl |  |-  ( ( m e. _om /\ x ~~ m ) -> ( y C. x -> y e. Fin ) ) | 
						
							| 41 | 40 | adantrr |  |-  ( ( m e. _om /\ ( x ~~ m /\ ph ) ) -> ( y C. x -> y e. Fin ) ) | 
						
							| 42 | 41 | adantrr |  |-  ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y C. x -> y e. Fin ) ) | 
						
							| 43 |  | isfi |  |-  ( y e. Fin <-> E. k e. _om y ~~ k ) | 
						
							| 44 |  | simprll |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> k e. _om ) | 
						
							| 45 |  | simprlr |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> y ~~ k ) | 
						
							| 46 |  | simplrr |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> ps ) | 
						
							| 47 |  | vex |  |-  y e. _V | 
						
							| 48 |  | breq1 |  |-  ( x = y -> ( x ~~ k <-> y ~~ k ) ) | 
						
							| 49 | 48 1 | anbi12d |  |-  ( x = y -> ( ( x ~~ k /\ ph ) <-> ( y ~~ k /\ ps ) ) ) | 
						
							| 50 | 47 49 | spcev |  |-  ( ( y ~~ k /\ ps ) -> E. x ( x ~~ k /\ ph ) ) | 
						
							| 51 | 45 46 50 | syl2anc |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> E. x ( x ~~ k /\ ph ) ) | 
						
							| 52 | 34 7 | sylibr |  |-  ( ( m e. _om /\ x ~~ m ) -> x e. Fin ) | 
						
							| 53 | 52 | adantrr |  |-  ( ( m e. _om /\ ( x ~~ m /\ ph ) ) -> x e. Fin ) | 
						
							| 54 | 53 | adantrr |  |-  ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> x e. Fin ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> x e. Fin ) | 
						
							| 56 |  | php3 |  |-  ( ( x e. Fin /\ y C. x ) -> y ~< x ) | 
						
							| 57 | 56 | ex |  |-  ( x e. Fin -> ( y C. x -> y ~< x ) ) | 
						
							| 58 | 55 57 | syl |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( y C. x -> y ~< x ) ) | 
						
							| 59 |  | vex |  |-  k e. _V | 
						
							| 60 |  | ssdomg |  |-  ( k e. _V -> ( m C_ k -> m ~<_ k ) ) | 
						
							| 61 | 59 60 | ax-mp |  |-  ( m C_ k -> m ~<_ k ) | 
						
							| 62 |  | endomtr |  |-  ( ( x ~~ m /\ m ~<_ k ) -> x ~<_ k ) | 
						
							| 63 | 62 | ex |  |-  ( x ~~ m -> ( m ~<_ k -> x ~<_ k ) ) | 
						
							| 64 | 63 | ad2antrr |  |-  ( ( ( x ~~ m /\ ph ) /\ ps ) -> ( m ~<_ k -> x ~<_ k ) ) | 
						
							| 65 | 64 | ad2antlr |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( m ~<_ k -> x ~<_ k ) ) | 
						
							| 66 |  | ensym |  |-  ( y ~~ k -> k ~~ y ) | 
						
							| 67 |  | domentr |  |-  ( ( x ~<_ k /\ k ~~ y ) -> x ~<_ y ) | 
						
							| 68 | 66 67 | sylan2 |  |-  ( ( x ~<_ k /\ y ~~ k ) -> x ~<_ y ) | 
						
							| 69 | 68 | expcom |  |-  ( y ~~ k -> ( x ~<_ k -> x ~<_ y ) ) | 
						
							| 70 | 69 | ad2antll |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( x ~<_ k -> x ~<_ y ) ) | 
						
							| 71 | 65 70 | syld |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( m ~<_ k -> x ~<_ y ) ) | 
						
							| 72 | 61 71 | syl5 |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( m C_ k -> x ~<_ y ) ) | 
						
							| 73 |  | domnsym |  |-  ( x ~<_ y -> -. y ~< x ) | 
						
							| 74 | 73 | con2i |  |-  ( y ~< x -> -. x ~<_ y ) | 
						
							| 75 | 72 74 | nsyli |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( y ~< x -> -. m C_ k ) ) | 
						
							| 76 | 58 75 | syld |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( k e. _om /\ y ~~ k ) ) -> ( y C. x -> -. m C_ k ) ) | 
						
							| 77 | 76 | impr |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> -. m C_ k ) | 
						
							| 78 |  | nnord |  |-  ( m e. _om -> Ord m ) | 
						
							| 79 | 78 | ad2antrr |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> Ord m ) | 
						
							| 80 |  | nnord |  |-  ( k e. _om -> Ord k ) | 
						
							| 81 | 80 | adantr |  |-  ( ( k e. _om /\ y ~~ k ) -> Ord k ) | 
						
							| 82 | 81 | ad2antrl |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> Ord k ) | 
						
							| 83 |  | ordtri1 |  |-  ( ( Ord m /\ Ord k ) -> ( m C_ k <-> -. k e. m ) ) | 
						
							| 84 | 83 | con2bid |  |-  ( ( Ord m /\ Ord k ) -> ( k e. m <-> -. m C_ k ) ) | 
						
							| 85 | 79 82 84 | syl2anc |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> ( k e. m <-> -. m C_ k ) ) | 
						
							| 86 | 77 85 | mpbird |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> k e. m ) | 
						
							| 87 | 44 51 86 | jca31 |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> ( ( k e. _om /\ E. x ( x ~~ k /\ ph ) ) /\ k e. m ) ) | 
						
							| 88 |  | elin |  |-  ( k e. ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) <-> ( k e. { n e. _om | E. x ( x ~~ n /\ ph ) } /\ k e. m ) ) | 
						
							| 89 |  | breq2 |  |-  ( n = k -> ( x ~~ n <-> x ~~ k ) ) | 
						
							| 90 | 89 | anbi1d |  |-  ( n = k -> ( ( x ~~ n /\ ph ) <-> ( x ~~ k /\ ph ) ) ) | 
						
							| 91 | 90 | exbidv |  |-  ( n = k -> ( E. x ( x ~~ n /\ ph ) <-> E. x ( x ~~ k /\ ph ) ) ) | 
						
							| 92 | 91 | elrab |  |-  ( k e. { n e. _om | E. x ( x ~~ n /\ ph ) } <-> ( k e. _om /\ E. x ( x ~~ k /\ ph ) ) ) | 
						
							| 93 | 92 | anbi1i |  |-  ( ( k e. { n e. _om | E. x ( x ~~ n /\ ph ) } /\ k e. m ) <-> ( ( k e. _om /\ E. x ( x ~~ k /\ ph ) ) /\ k e. m ) ) | 
						
							| 94 | 88 93 | bitri |  |-  ( k e. ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) <-> ( ( k e. _om /\ E. x ( x ~~ k /\ ph ) ) /\ k e. m ) ) | 
						
							| 95 | 87 94 | sylibr |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> k e. ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) ) | 
						
							| 96 | 95 | ne0d |  |-  ( ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) /\ ( ( k e. _om /\ y ~~ k ) /\ y C. x ) ) -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) | 
						
							| 97 | 96 | exp44 |  |-  ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( k e. _om -> ( y ~~ k -> ( y C. x -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) ) ) ) | 
						
							| 98 | 97 | rexlimdv |  |-  ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( E. k e. _om y ~~ k -> ( y C. x -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) ) ) | 
						
							| 99 | 43 98 | biimtrid |  |-  ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y e. Fin -> ( y C. x -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) ) ) | 
						
							| 100 | 99 | com23 |  |-  ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y C. x -> ( y e. Fin -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) ) ) | 
						
							| 101 | 42 100 | mpdd |  |-  ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y C. x -> ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) =/= (/) ) ) | 
						
							| 102 | 101 | necon2bd |  |-  ( ( m e. _om /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> -. y C. x ) ) | 
						
							| 103 | 102 | ex |  |-  ( m e. _om -> ( ( ( x ~~ m /\ ph ) /\ ps ) -> ( ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> -. y C. x ) ) ) | 
						
							| 104 | 103 | com23 |  |-  ( m e. _om -> ( ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> ( ( ( x ~~ m /\ ph ) /\ ps ) -> -. y C. x ) ) ) | 
						
							| 105 | 104 | imp31 |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> -. y C. x ) | 
						
							| 106 | 105 | pm2.21d |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y C. x -> x = y ) ) | 
						
							| 107 |  | equcomi |  |-  ( y = x -> x = y ) | 
						
							| 108 | 107 | a1i |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y = x -> x = y ) ) | 
						
							| 109 | 106 108 | jaod |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( ( y C. x \/ y = x ) -> x = y ) ) | 
						
							| 110 | 33 109 | biimtrid |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( ( x ~~ m /\ ph ) /\ ps ) ) -> ( y C_ x -> x = y ) ) | 
						
							| 111 | 110 | expr |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> ( ps -> ( y C_ x -> x = y ) ) ) | 
						
							| 112 | 111 | com23 |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> ( y C_ x -> ( ps -> x = y ) ) ) | 
						
							| 113 | 112 | impd |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> ( ( y C_ x /\ ps ) -> x = y ) ) | 
						
							| 114 | 113 | alrimiv |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> A. y ( ( y C_ x /\ ps ) -> x = y ) ) | 
						
							| 115 | 32 114 | jca |  |-  ( ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) /\ ( x ~~ m /\ ph ) ) -> ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) | 
						
							| 116 | 115 | ex |  |-  ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) -> ( ( x ~~ m /\ ph ) -> ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) ) | 
						
							| 117 | 31 116 | eximd |  |-  ( ( m e. _om /\ ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) ) -> ( E. x ( x ~~ m /\ ph ) -> E. x ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) ) | 
						
							| 118 | 117 | impancom |  |-  ( ( m e. _om /\ E. x ( x ~~ m /\ ph ) ) -> ( ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> E. x ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) ) | 
						
							| 119 | 14 118 | sylbi |  |-  ( m e. { n e. _om | E. x ( x ~~ n /\ ph ) } -> ( ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> E. x ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) ) | 
						
							| 120 | 119 | rexlimiv |  |-  ( E. m e. { n e. _om | E. x ( x ~~ n /\ ph ) } ( { n e. _om | E. x ( x ~~ n /\ ph ) } i^i m ) = (/) -> E. x ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) | 
						
							| 121 | 20 26 120 | 3syl |  |-  ( E. x e. Fin ph -> E. x ( ph /\ A. y ( ( y C_ x /\ ps ) -> x = y ) ) ) |