Metamath Proof Explorer


Theorem gtinf

Description: Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion gtinf ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑥𝑦 ) ∧ ( 𝐴 ∈ ℝ ∧ inf ( 𝑆 , ℝ , < ) < 𝐴 ) ) → ∃ 𝑧𝑆 𝑧 < 𝐴 )

Proof

Step Hyp Ref Expression
1 simprl ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑥𝑦 ) ∧ ( 𝐴 ∈ ℝ ∧ inf ( 𝑆 , ℝ , < ) < 𝐴 ) ) → 𝐴 ∈ ℝ )
2 simprr ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑥𝑦 ) ∧ ( 𝐴 ∈ ℝ ∧ inf ( 𝑆 , ℝ , < ) < 𝐴 ) ) → inf ( 𝑆 , ℝ , < ) < 𝐴 )
3 ltso < Or ℝ
4 3 a1i ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑥𝑦 ) ∧ ( 𝐴 ∈ ℝ ∧ inf ( 𝑆 , ℝ , < ) < 𝐴 ) ) → < Or ℝ )
5 infm3 ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑥𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧𝑆 𝑧 < 𝑦 ) ) )
6 5 adantr ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑥𝑦 ) ∧ ( 𝐴 ∈ ℝ ∧ inf ( 𝑆 , ℝ , < ) < 𝐴 ) ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧𝑆 𝑧 < 𝑦 ) ) )
7 4 6 infglb ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑥𝑦 ) ∧ ( 𝐴 ∈ ℝ ∧ inf ( 𝑆 , ℝ , < ) < 𝐴 ) ) → ( ( 𝐴 ∈ ℝ ∧ inf ( 𝑆 , ℝ , < ) < 𝐴 ) → ∃ 𝑧𝑆 𝑧 < 𝐴 ) )
8 1 2 7 mp2and ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑥𝑦 ) ∧ ( 𝐴 ∈ ℝ ∧ inf ( 𝑆 , ℝ , < ) < 𝐴 ) ) → ∃ 𝑧𝑆 𝑧 < 𝐴 )