Metamath Proof Explorer


Theorem gtinf

Description: Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion gtinf SSxySxyAsupS<<AzSz<A

Proof

Step Hyp Ref Expression
1 simprl SSxySxyAsupS<<AA
2 simprr SSxySxyAsupS<<AsupS<<A
3 ltso <Or
4 3 a1i SSxySxyAsupS<<A<Or
5 infm3 SSxySxyxyS¬y<xyx<yzSz<y
6 5 adantr SSxySxyAsupS<<AxyS¬y<xyx<yzSz<y
7 4 6 infglb SSxySxyAsupS<<AAsupS<<AzSz<A
8 1 2 7 mp2and SSxySxyAsupS<<AzSz<A