Metamath Proof Explorer


Theorem gtinf

Description: Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion gtinf S S x y S x y A sup S < < A z S z < A

Proof

Step Hyp Ref Expression
1 simprl S S x y S x y A sup S < < A A
2 simprr S S x y S x y A sup S < < A sup S < < A
3 ltso < Or
4 3 a1i S S x y S x y A sup S < < A < Or
5 infm3 S S x y S x y x y S ¬ y < x y x < y z S z < y
6 5 adantr S S x y S x y A sup S < < A x y S ¬ y < x y x < y z S z < y
7 4 6 infglb S S x y S x y A sup S < < A A sup S < < A z S z < A
8 1 2 7 mp2and S S x y S x y A sup S < < A z S z < A