Metamath Proof Explorer


Theorem wefrc

Description: A nonempty subclass of a class well-ordered by membership has a minimal element. Special case of Proposition 6.26 of TakeutiZaring p. 31. (Contributed by NM, 17-Feb-2004)

Ref Expression
Assertion wefrc ( ( E We 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ )

Proof

Step Hyp Ref Expression
1 wess ( 𝐵𝐴 → ( E We 𝐴 → E We 𝐵 ) )
2 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐵 )
3 ineq2 ( 𝑥 = 𝑦 → ( 𝐵𝑥 ) = ( 𝐵𝑦 ) )
4 3 eqeq1d ( 𝑥 = 𝑦 → ( ( 𝐵𝑥 ) = ∅ ↔ ( 𝐵𝑦 ) = ∅ ) )
5 4 rspcev ( ( 𝑦𝐵 ∧ ( 𝐵𝑦 ) = ∅ ) → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ )
6 5 ex ( 𝑦𝐵 → ( ( 𝐵𝑦 ) = ∅ → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ ) )
7 6 adantl ( ( E We 𝐵𝑦𝐵 ) → ( ( 𝐵𝑦 ) = ∅ → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ ) )
8 inss1 ( 𝐵𝑦 ) ⊆ 𝐵
9 wefr ( E We 𝐵 → E Fr 𝐵 )
10 vex 𝑦 ∈ V
11 10 inex2 ( 𝐵𝑦 ) ∈ V
12 11 epfrc ( ( E Fr 𝐵 ∧ ( 𝐵𝑦 ) ⊆ 𝐵 ∧ ( 𝐵𝑦 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐵𝑦 ) ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ )
13 9 12 syl3an1 ( ( E We 𝐵 ∧ ( 𝐵𝑦 ) ⊆ 𝐵 ∧ ( 𝐵𝑦 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐵𝑦 ) ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ )
14 13 3exp ( E We 𝐵 → ( ( 𝐵𝑦 ) ⊆ 𝐵 → ( ( 𝐵𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ ( 𝐵𝑦 ) ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ ) ) )
15 8 14 mpi ( E We 𝐵 → ( ( 𝐵𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ ( 𝐵𝑦 ) ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ ) )
16 rexin ( ∃ 𝑥 ∈ ( 𝐵𝑦 ) ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ ↔ ∃ 𝑥𝐵 ( 𝑥𝑦 ∧ ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ ) )
17 15 16 syl6ib ( E We 𝐵 → ( ( 𝐵𝑦 ) ≠ ∅ → ∃ 𝑥𝐵 ( 𝑥𝑦 ∧ ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ ) ) )
18 17 adantr ( ( E We 𝐵𝑦𝐵 ) → ( ( 𝐵𝑦 ) ≠ ∅ → ∃ 𝑥𝐵 ( 𝑥𝑦 ∧ ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ ) ) )
19 elin ( 𝑧 ∈ ( 𝐵𝑥 ) ↔ ( 𝑧𝐵𝑧𝑥 ) )
20 df-3an ( ( 𝑦𝐵𝑧𝐵𝑥𝐵 ) ↔ ( ( 𝑦𝐵𝑧𝐵 ) ∧ 𝑥𝐵 ) )
21 3anrot ( ( 𝑦𝐵𝑧𝐵𝑥𝐵 ) ↔ ( 𝑧𝐵𝑥𝐵𝑦𝐵 ) )
22 20 21 bitr3i ( ( ( 𝑦𝐵𝑧𝐵 ) ∧ 𝑥𝐵 ) ↔ ( 𝑧𝐵𝑥𝐵𝑦𝐵 ) )
23 wetrep ( ( E We 𝐵 ∧ ( 𝑧𝐵𝑥𝐵𝑦𝐵 ) ) → ( ( 𝑧𝑥𝑥𝑦 ) → 𝑧𝑦 ) )
24 23 expd ( ( E We 𝐵 ∧ ( 𝑧𝐵𝑥𝐵𝑦𝐵 ) ) → ( 𝑧𝑥 → ( 𝑥𝑦𝑧𝑦 ) ) )
25 22 24 sylan2b ( ( E We 𝐵 ∧ ( ( 𝑦𝐵𝑧𝐵 ) ∧ 𝑥𝐵 ) ) → ( 𝑧𝑥 → ( 𝑥𝑦𝑧𝑦 ) ) )
26 25 exp44 ( E We 𝐵 → ( 𝑦𝐵 → ( 𝑧𝐵 → ( 𝑥𝐵 → ( 𝑧𝑥 → ( 𝑥𝑦𝑧𝑦 ) ) ) ) ) )
27 26 imp ( ( E We 𝐵𝑦𝐵 ) → ( 𝑧𝐵 → ( 𝑥𝐵 → ( 𝑧𝑥 → ( 𝑥𝑦𝑧𝑦 ) ) ) ) )
28 27 com34 ( ( E We 𝐵𝑦𝐵 ) → ( 𝑧𝐵 → ( 𝑧𝑥 → ( 𝑥𝐵 → ( 𝑥𝑦𝑧𝑦 ) ) ) ) )
29 28 impd ( ( E We 𝐵𝑦𝐵 ) → ( ( 𝑧𝐵𝑧𝑥 ) → ( 𝑥𝐵 → ( 𝑥𝑦𝑧𝑦 ) ) ) )
30 19 29 syl5bi ( ( E We 𝐵𝑦𝐵 ) → ( 𝑧 ∈ ( 𝐵𝑥 ) → ( 𝑥𝐵 → ( 𝑥𝑦𝑧𝑦 ) ) ) )
31 30 imp4a ( ( E We 𝐵𝑦𝐵 ) → ( 𝑧 ∈ ( 𝐵𝑥 ) → ( ( 𝑥𝐵𝑥𝑦 ) → 𝑧𝑦 ) ) )
32 31 com23 ( ( E We 𝐵𝑦𝐵 ) → ( ( 𝑥𝐵𝑥𝑦 ) → ( 𝑧 ∈ ( 𝐵𝑥 ) → 𝑧𝑦 ) ) )
33 32 ralrimdv ( ( E We 𝐵𝑦𝐵 ) → ( ( 𝑥𝐵𝑥𝑦 ) → ∀ 𝑧 ∈ ( 𝐵𝑥 ) 𝑧𝑦 ) )
34 dfss3 ( ( 𝐵𝑥 ) ⊆ 𝑦 ↔ ∀ 𝑧 ∈ ( 𝐵𝑥 ) 𝑧𝑦 )
35 33 34 syl6ibr ( ( E We 𝐵𝑦𝐵 ) → ( ( 𝑥𝐵𝑥𝑦 ) → ( 𝐵𝑥 ) ⊆ 𝑦 ) )
36 dfss ( ( 𝐵𝑥 ) ⊆ 𝑦 ↔ ( 𝐵𝑥 ) = ( ( 𝐵𝑥 ) ∩ 𝑦 ) )
37 in32 ( ( 𝐵𝑥 ) ∩ 𝑦 ) = ( ( 𝐵𝑦 ) ∩ 𝑥 )
38 37 eqeq2i ( ( 𝐵𝑥 ) = ( ( 𝐵𝑥 ) ∩ 𝑦 ) ↔ ( 𝐵𝑥 ) = ( ( 𝐵𝑦 ) ∩ 𝑥 ) )
39 36 38 sylbb ( ( 𝐵𝑥 ) ⊆ 𝑦 → ( 𝐵𝑥 ) = ( ( 𝐵𝑦 ) ∩ 𝑥 ) )
40 39 eqeq1d ( ( 𝐵𝑥 ) ⊆ 𝑦 → ( ( 𝐵𝑥 ) = ∅ ↔ ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ ) )
41 40 biimprd ( ( 𝐵𝑥 ) ⊆ 𝑦 → ( ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ → ( 𝐵𝑥 ) = ∅ ) )
42 35 41 syl6 ( ( E We 𝐵𝑦𝐵 ) → ( ( 𝑥𝐵𝑥𝑦 ) → ( ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ → ( 𝐵𝑥 ) = ∅ ) ) )
43 42 expd ( ( E We 𝐵𝑦𝐵 ) → ( 𝑥𝐵 → ( 𝑥𝑦 → ( ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ → ( 𝐵𝑥 ) = ∅ ) ) ) )
44 43 imp4a ( ( E We 𝐵𝑦𝐵 ) → ( 𝑥𝐵 → ( ( 𝑥𝑦 ∧ ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ ) → ( 𝐵𝑥 ) = ∅ ) ) )
45 44 reximdvai ( ( E We 𝐵𝑦𝐵 ) → ( ∃ 𝑥𝐵 ( 𝑥𝑦 ∧ ( ( 𝐵𝑦 ) ∩ 𝑥 ) = ∅ ) → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ ) )
46 18 45 syld ( ( E We 𝐵𝑦𝐵 ) → ( ( 𝐵𝑦 ) ≠ ∅ → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ ) )
47 7 46 pm2.61dne ( ( E We 𝐵𝑦𝐵 ) → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ )
48 47 ex ( E We 𝐵 → ( 𝑦𝐵 → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ ) )
49 48 exlimdv ( E We 𝐵 → ( ∃ 𝑦 𝑦𝐵 → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ ) )
50 2 49 syl5bi ( E We 𝐵 → ( 𝐵 ≠ ∅ → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ ) )
51 1 50 syl6com ( E We 𝐴 → ( 𝐵𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ ) ) )
52 51 3imp ( ( E We 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ )