Description: Theorem *3.3 (Exp) of WhiteheadRussell p. 112. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 24-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm3.3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) → ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ) | |
2 | 1 | expd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |