| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inss2 |  |-  ( .<_ i^i `' .<_ ) C_ `' .<_ | 
						
							| 2 |  | relcnv |  |-  Rel `' .<_ | 
						
							| 3 |  | relss |  |-  ( ( .<_ i^i `' .<_ ) C_ `' .<_ -> ( Rel `' .<_ -> Rel ( .<_ i^i `' .<_ ) ) ) | 
						
							| 4 | 1 2 3 | mp2 |  |-  Rel ( .<_ i^i `' .<_ ) | 
						
							| 5 | 4 | a1i |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> Rel ( .<_ i^i `' .<_ ) ) | 
						
							| 6 |  | eqidd |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> dom ( .<_ i^i `' .<_ ) = dom ( .<_ i^i `' .<_ ) ) | 
						
							| 7 |  | brin |  |-  ( r ( .<_ i^i `' .<_ ) s <-> ( r .<_ s /\ r `' .<_ s ) ) | 
						
							| 8 |  | vex |  |-  r e. _V | 
						
							| 9 |  | vex |  |-  s e. _V | 
						
							| 10 | 8 9 | brcnv |  |-  ( r `' .<_ s <-> s .<_ r ) | 
						
							| 11 | 10 | anbi2i |  |-  ( ( r .<_ s /\ r `' .<_ s ) <-> ( r .<_ s /\ s .<_ r ) ) | 
						
							| 12 | 7 11 | bitri |  |-  ( r ( .<_ i^i `' .<_ ) s <-> ( r .<_ s /\ s .<_ r ) ) | 
						
							| 13 |  | brin |  |-  ( s ( .<_ i^i `' .<_ ) t <-> ( s .<_ t /\ s `' .<_ t ) ) | 
						
							| 14 |  | vex |  |-  t e. _V | 
						
							| 15 | 9 14 | brcnv |  |-  ( s `' .<_ t <-> t .<_ s ) | 
						
							| 16 | 15 | anbi2i |  |-  ( ( s .<_ t /\ s `' .<_ t ) <-> ( s .<_ t /\ t .<_ s ) ) | 
						
							| 17 | 13 16 | bitri |  |-  ( s ( .<_ i^i `' .<_ ) t <-> ( s .<_ t /\ t .<_ s ) ) | 
						
							| 18 | 12 17 | anbi12i |  |-  ( ( r ( .<_ i^i `' .<_ ) s /\ s ( .<_ i^i `' .<_ ) t ) <-> ( ( r .<_ s /\ s .<_ r ) /\ ( s .<_ t /\ t .<_ s ) ) ) | 
						
							| 19 |  | breq1 |  |-  ( a = r -> ( a .<_ b <-> r .<_ b ) ) | 
						
							| 20 | 19 | anbi1d |  |-  ( a = r -> ( ( a .<_ b /\ b .<_ c ) <-> ( r .<_ b /\ b .<_ c ) ) ) | 
						
							| 21 |  | breq1 |  |-  ( a = r -> ( a .<_ c <-> r .<_ c ) ) | 
						
							| 22 | 20 21 | imbi12d |  |-  ( a = r -> ( ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) <-> ( ( r .<_ b /\ b .<_ c ) -> r .<_ c ) ) ) | 
						
							| 23 | 22 | 2albidv |  |-  ( a = r -> ( A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) <-> A. b A. c ( ( r .<_ b /\ b .<_ c ) -> r .<_ c ) ) ) | 
						
							| 24 | 23 | spvv |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> A. b A. c ( ( r .<_ b /\ b .<_ c ) -> r .<_ c ) ) | 
						
							| 25 |  | breq2 |  |-  ( b = s -> ( r .<_ b <-> r .<_ s ) ) | 
						
							| 26 |  | breq1 |  |-  ( b = s -> ( b .<_ c <-> s .<_ c ) ) | 
						
							| 27 | 25 26 | anbi12d |  |-  ( b = s -> ( ( r .<_ b /\ b .<_ c ) <-> ( r .<_ s /\ s .<_ c ) ) ) | 
						
							| 28 | 27 | imbi1d |  |-  ( b = s -> ( ( ( r .<_ b /\ b .<_ c ) -> r .<_ c ) <-> ( ( r .<_ s /\ s .<_ c ) -> r .<_ c ) ) ) | 
						
							| 29 | 28 | albidv |  |-  ( b = s -> ( A. c ( ( r .<_ b /\ b .<_ c ) -> r .<_ c ) <-> A. c ( ( r .<_ s /\ s .<_ c ) -> r .<_ c ) ) ) | 
						
							| 30 | 29 | spvv |  |-  ( A. b A. c ( ( r .<_ b /\ b .<_ c ) -> r .<_ c ) -> A. c ( ( r .<_ s /\ s .<_ c ) -> r .<_ c ) ) | 
						
							| 31 |  | breq2 |  |-  ( c = t -> ( s .<_ c <-> s .<_ t ) ) | 
						
							| 32 | 31 | anbi2d |  |-  ( c = t -> ( ( r .<_ s /\ s .<_ c ) <-> ( r .<_ s /\ s .<_ t ) ) ) | 
						
							| 33 |  | breq2 |  |-  ( c = t -> ( r .<_ c <-> r .<_ t ) ) | 
						
							| 34 | 32 33 | imbi12d |  |-  ( c = t -> ( ( ( r .<_ s /\ s .<_ c ) -> r .<_ c ) <-> ( ( r .<_ s /\ s .<_ t ) -> r .<_ t ) ) ) | 
						
							| 35 | 34 | spvv |  |-  ( A. c ( ( r .<_ s /\ s .<_ c ) -> r .<_ c ) -> ( ( r .<_ s /\ s .<_ t ) -> r .<_ t ) ) | 
						
							| 36 |  | pm3.3 |  |-  ( ( ( r .<_ s /\ s .<_ t ) -> r .<_ t ) -> ( r .<_ s -> ( s .<_ t -> r .<_ t ) ) ) | 
						
							| 37 | 36 | com23 |  |-  ( ( ( r .<_ s /\ s .<_ t ) -> r .<_ t ) -> ( s .<_ t -> ( r .<_ s -> r .<_ t ) ) ) | 
						
							| 38 | 37 | adantrd |  |-  ( ( ( r .<_ s /\ s .<_ t ) -> r .<_ t ) -> ( ( s .<_ t /\ t .<_ s ) -> ( r .<_ s -> r .<_ t ) ) ) | 
						
							| 39 | 38 | com23 |  |-  ( ( ( r .<_ s /\ s .<_ t ) -> r .<_ t ) -> ( r .<_ s -> ( ( s .<_ t /\ t .<_ s ) -> r .<_ t ) ) ) | 
						
							| 40 | 39 | adantrd |  |-  ( ( ( r .<_ s /\ s .<_ t ) -> r .<_ t ) -> ( ( r .<_ s /\ s .<_ r ) -> ( ( s .<_ t /\ t .<_ s ) -> r .<_ t ) ) ) | 
						
							| 41 | 40 | impd |  |-  ( ( ( r .<_ s /\ s .<_ t ) -> r .<_ t ) -> ( ( ( r .<_ s /\ s .<_ r ) /\ ( s .<_ t /\ t .<_ s ) ) -> r .<_ t ) ) | 
						
							| 42 | 24 30 35 41 | 4syl |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> ( ( ( r .<_ s /\ s .<_ r ) /\ ( s .<_ t /\ t .<_ s ) ) -> r .<_ t ) ) | 
						
							| 43 |  | breq1 |  |-  ( a = t -> ( a .<_ b <-> t .<_ b ) ) | 
						
							| 44 | 43 | anbi1d |  |-  ( a = t -> ( ( a .<_ b /\ b .<_ c ) <-> ( t .<_ b /\ b .<_ c ) ) ) | 
						
							| 45 |  | breq1 |  |-  ( a = t -> ( a .<_ c <-> t .<_ c ) ) | 
						
							| 46 | 44 45 | imbi12d |  |-  ( a = t -> ( ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) <-> ( ( t .<_ b /\ b .<_ c ) -> t .<_ c ) ) ) | 
						
							| 47 | 46 | 2albidv |  |-  ( a = t -> ( A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) <-> A. b A. c ( ( t .<_ b /\ b .<_ c ) -> t .<_ c ) ) ) | 
						
							| 48 | 47 | spvv |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> A. b A. c ( ( t .<_ b /\ b .<_ c ) -> t .<_ c ) ) | 
						
							| 49 |  | breq2 |  |-  ( b = s -> ( t .<_ b <-> t .<_ s ) ) | 
						
							| 50 | 49 26 | anbi12d |  |-  ( b = s -> ( ( t .<_ b /\ b .<_ c ) <-> ( t .<_ s /\ s .<_ c ) ) ) | 
						
							| 51 | 50 | imbi1d |  |-  ( b = s -> ( ( ( t .<_ b /\ b .<_ c ) -> t .<_ c ) <-> ( ( t .<_ s /\ s .<_ c ) -> t .<_ c ) ) ) | 
						
							| 52 | 51 | albidv |  |-  ( b = s -> ( A. c ( ( t .<_ b /\ b .<_ c ) -> t .<_ c ) <-> A. c ( ( t .<_ s /\ s .<_ c ) -> t .<_ c ) ) ) | 
						
							| 53 | 52 | spvv |  |-  ( A. b A. c ( ( t .<_ b /\ b .<_ c ) -> t .<_ c ) -> A. c ( ( t .<_ s /\ s .<_ c ) -> t .<_ c ) ) | 
						
							| 54 |  | breq2 |  |-  ( c = r -> ( s .<_ c <-> s .<_ r ) ) | 
						
							| 55 | 54 | anbi2d |  |-  ( c = r -> ( ( t .<_ s /\ s .<_ c ) <-> ( t .<_ s /\ s .<_ r ) ) ) | 
						
							| 56 |  | breq2 |  |-  ( c = r -> ( t .<_ c <-> t .<_ r ) ) | 
						
							| 57 | 55 56 | imbi12d |  |-  ( c = r -> ( ( ( t .<_ s /\ s .<_ c ) -> t .<_ c ) <-> ( ( t .<_ s /\ s .<_ r ) -> t .<_ r ) ) ) | 
						
							| 58 | 57 | spvv |  |-  ( A. c ( ( t .<_ s /\ s .<_ c ) -> t .<_ c ) -> ( ( t .<_ s /\ s .<_ r ) -> t .<_ r ) ) | 
						
							| 59 |  | pm3.3 |  |-  ( ( ( t .<_ s /\ s .<_ r ) -> t .<_ r ) -> ( t .<_ s -> ( s .<_ r -> t .<_ r ) ) ) | 
						
							| 60 | 59 | adantld |  |-  ( ( ( t .<_ s /\ s .<_ r ) -> t .<_ r ) -> ( ( s .<_ t /\ t .<_ s ) -> ( s .<_ r -> t .<_ r ) ) ) | 
						
							| 61 | 60 | com23 |  |-  ( ( ( t .<_ s /\ s .<_ r ) -> t .<_ r ) -> ( s .<_ r -> ( ( s .<_ t /\ t .<_ s ) -> t .<_ r ) ) ) | 
						
							| 62 | 61 | adantld |  |-  ( ( ( t .<_ s /\ s .<_ r ) -> t .<_ r ) -> ( ( r .<_ s /\ s .<_ r ) -> ( ( s .<_ t /\ t .<_ s ) -> t .<_ r ) ) ) | 
						
							| 63 | 62 | impd |  |-  ( ( ( t .<_ s /\ s .<_ r ) -> t .<_ r ) -> ( ( ( r .<_ s /\ s .<_ r ) /\ ( s .<_ t /\ t .<_ s ) ) -> t .<_ r ) ) | 
						
							| 64 | 48 53 58 63 | 4syl |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> ( ( ( r .<_ s /\ s .<_ r ) /\ ( s .<_ t /\ t .<_ s ) ) -> t .<_ r ) ) | 
						
							| 65 | 42 64 | jcad |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> ( ( ( r .<_ s /\ s .<_ r ) /\ ( s .<_ t /\ t .<_ s ) ) -> ( r .<_ t /\ t .<_ r ) ) ) | 
						
							| 66 |  | brin |  |-  ( r ( .<_ i^i `' .<_ ) t <-> ( r .<_ t /\ r `' .<_ t ) ) | 
						
							| 67 | 8 14 | brcnv |  |-  ( r `' .<_ t <-> t .<_ r ) | 
						
							| 68 | 67 | anbi2i |  |-  ( ( r .<_ t /\ r `' .<_ t ) <-> ( r .<_ t /\ t .<_ r ) ) | 
						
							| 69 | 66 68 | bitr2i |  |-  ( ( r .<_ t /\ t .<_ r ) <-> r ( .<_ i^i `' .<_ ) t ) | 
						
							| 70 | 65 69 | imbitrdi |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> ( ( ( r .<_ s /\ s .<_ r ) /\ ( s .<_ t /\ t .<_ s ) ) -> r ( .<_ i^i `' .<_ ) t ) ) | 
						
							| 71 | 18 70 | biimtrid |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> ( ( r ( .<_ i^i `' .<_ ) s /\ s ( .<_ i^i `' .<_ ) t ) -> r ( .<_ i^i `' .<_ ) t ) ) | 
						
							| 72 | 9 8 | brcnv |  |-  ( s `' .<_ r <-> r .<_ s ) | 
						
							| 73 | 72 | bicomi |  |-  ( r .<_ s <-> s `' .<_ r ) | 
						
							| 74 | 73 10 | anbi12ci |  |-  ( ( r .<_ s /\ r `' .<_ s ) <-> ( s .<_ r /\ s `' .<_ r ) ) | 
						
							| 75 |  | brin |  |-  ( s ( .<_ i^i `' .<_ ) r <-> ( s .<_ r /\ s `' .<_ r ) ) | 
						
							| 76 | 74 7 75 | 3bitr4i |  |-  ( r ( .<_ i^i `' .<_ ) s <-> s ( .<_ i^i `' .<_ ) r ) | 
						
							| 77 | 76 | biimpi |  |-  ( r ( .<_ i^i `' .<_ ) s -> s ( .<_ i^i `' .<_ ) r ) | 
						
							| 78 | 71 77 | jctil |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> ( ( r ( .<_ i^i `' .<_ ) s -> s ( .<_ i^i `' .<_ ) r ) /\ ( ( r ( .<_ i^i `' .<_ ) s /\ s ( .<_ i^i `' .<_ ) t ) -> r ( .<_ i^i `' .<_ ) t ) ) ) | 
						
							| 79 | 78 | alrimiv |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> A. t ( ( r ( .<_ i^i `' .<_ ) s -> s ( .<_ i^i `' .<_ ) r ) /\ ( ( r ( .<_ i^i `' .<_ ) s /\ s ( .<_ i^i `' .<_ ) t ) -> r ( .<_ i^i `' .<_ ) t ) ) ) | 
						
							| 80 | 79 | alrimivv |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> A. r A. s A. t ( ( r ( .<_ i^i `' .<_ ) s -> s ( .<_ i^i `' .<_ ) r ) /\ ( ( r ( .<_ i^i `' .<_ ) s /\ s ( .<_ i^i `' .<_ ) t ) -> r ( .<_ i^i `' .<_ ) t ) ) ) | 
						
							| 81 |  | dfer2 |  |-  ( ( .<_ i^i `' .<_ ) Er dom ( .<_ i^i `' .<_ ) <-> ( Rel ( .<_ i^i `' .<_ ) /\ dom ( .<_ i^i `' .<_ ) = dom ( .<_ i^i `' .<_ ) /\ A. r A. s A. t ( ( r ( .<_ i^i `' .<_ ) s -> s ( .<_ i^i `' .<_ ) r ) /\ ( ( r ( .<_ i^i `' .<_ ) s /\ s ( .<_ i^i `' .<_ ) t ) -> r ( .<_ i^i `' .<_ ) t ) ) ) ) | 
						
							| 82 | 5 6 80 81 | syl3anbrc |  |-  ( A. a A. b A. c ( ( a .<_ b /\ b .<_ c ) -> a .<_ c ) -> ( .<_ i^i `' .<_ ) Er dom ( .<_ i^i `' .<_ ) ) |