Step |
Hyp |
Ref |
Expression |
1 |
|
subtr.1 |
|- F/_ x A |
2 |
|
subtr.2 |
|- F/_ x B |
3 |
|
subtr2.3 |
|- F/ x ps |
4 |
|
subtr2.4 |
|- F/ x ch |
5 |
|
subtr2.5 |
|- ( x = A -> ( ph <-> ps ) ) |
6 |
|
subtr2.6 |
|- ( x = B -> ( ph <-> ch ) ) |
7 |
1 2
|
nfeq |
|- F/ x A = B |
8 |
3 4
|
nfbi |
|- F/ x ( ps <-> ch ) |
9 |
7 8
|
nfim |
|- F/ x ( A = B -> ( ps <-> ch ) ) |
10 |
|
eqeq1 |
|- ( x = A -> ( x = B <-> A = B ) ) |
11 |
5
|
bibi1d |
|- ( x = A -> ( ( ph <-> ch ) <-> ( ps <-> ch ) ) ) |
12 |
10 11
|
imbi12d |
|- ( x = A -> ( ( x = B -> ( ph <-> ch ) ) <-> ( A = B -> ( ps <-> ch ) ) ) ) |
13 |
1 9 12 6
|
vtoclgf |
|- ( A e. C -> ( A = B -> ( ps <-> ch ) ) ) |
14 |
13
|
adantr |
|- ( ( A e. C /\ B e. D ) -> ( A = B -> ( ps <-> ch ) ) ) |