Metamath Proof Explorer


Theorem subtr2

Description: Transitivity of implicit substitution into a wff. (Contributed by Jeff Hankins, 19-Sep-2009) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses subtr.1
|- F/_ x A
subtr.2
|- F/_ x B
subtr2.3
|- F/ x ps
subtr2.4
|- F/ x ch
subtr2.5
|- ( x = A -> ( ph <-> ps ) )
subtr2.6
|- ( x = B -> ( ph <-> ch ) )
Assertion subtr2
|- ( ( A e. C /\ B e. D ) -> ( A = B -> ( ps <-> ch ) ) )

Proof

Step Hyp Ref Expression
1 subtr.1
 |-  F/_ x A
2 subtr.2
 |-  F/_ x B
3 subtr2.3
 |-  F/ x ps
4 subtr2.4
 |-  F/ x ch
5 subtr2.5
 |-  ( x = A -> ( ph <-> ps ) )
6 subtr2.6
 |-  ( x = B -> ( ph <-> ch ) )
7 1 2 nfeq
 |-  F/ x A = B
8 3 4 nfbi
 |-  F/ x ( ps <-> ch )
9 7 8 nfim
 |-  F/ x ( A = B -> ( ps <-> ch ) )
10 eqeq1
 |-  ( x = A -> ( x = B <-> A = B ) )
11 5 bibi1d
 |-  ( x = A -> ( ( ph <-> ch ) <-> ( ps <-> ch ) ) )
12 10 11 imbi12d
 |-  ( x = A -> ( ( x = B -> ( ph <-> ch ) ) <-> ( A = B -> ( ps <-> ch ) ) ) )
13 1 9 12 6 vtoclgf
 |-  ( A e. C -> ( A = B -> ( ps <-> ch ) ) )
14 13 adantr
 |-  ( ( A e. C /\ B e. D ) -> ( A = B -> ( ps <-> ch ) ) )