Metamath Proof Explorer


Theorem ecase13d

Description: Deduction for elimination by cases. (Contributed by Jeff Hankins, 18-Aug-2009)

Ref Expression
Hypotheses ecase13d.1 ( 𝜑 → ¬ 𝜒 )
ecase13d.2 ( 𝜑 → ¬ 𝜃 )
ecase13d.3 ( 𝜑 → ( 𝜒𝜓𝜃 ) )
Assertion ecase13d ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 ecase13d.1 ( 𝜑 → ¬ 𝜒 )
2 ecase13d.2 ( 𝜑 → ¬ 𝜃 )
3 ecase13d.3 ( 𝜑 → ( 𝜒𝜓𝜃 ) )
4 3orass ( ( 𝜒𝜓𝜃 ) ↔ ( 𝜒 ∨ ( 𝜓𝜃 ) ) )
5 df-or ( ( 𝜒 ∨ ( 𝜓𝜃 ) ) ↔ ( ¬ 𝜒 → ( 𝜓𝜃 ) ) )
6 4 5 bitri ( ( 𝜒𝜓𝜃 ) ↔ ( ¬ 𝜒 → ( 𝜓𝜃 ) ) )
7 3 6 sylib ( 𝜑 → ( ¬ 𝜒 → ( 𝜓𝜃 ) ) )
8 1 7 mpd ( 𝜑 → ( 𝜓𝜃 ) )
9 orcom ( ( 𝜓𝜃 ) ↔ ( 𝜃𝜓 ) )
10 df-or ( ( 𝜃𝜓 ) ↔ ( ¬ 𝜃𝜓 ) )
11 9 10 bitri ( ( 𝜓𝜃 ) ↔ ( ¬ 𝜃𝜓 ) )
12 8 11 sylib ( 𝜑 → ( ¬ 𝜃𝜓 ) )
13 2 12 mpd ( 𝜑𝜓 )