| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ecase13d.1 | ⊢ ( 𝜑  →  ¬  𝜒 ) | 
						
							| 2 |  | ecase13d.2 | ⊢ ( 𝜑  →  ¬  𝜃 ) | 
						
							| 3 |  | ecase13d.3 | ⊢ ( 𝜑  →  ( 𝜒  ∨  𝜓  ∨  𝜃 ) ) | 
						
							| 4 |  | 3orass | ⊢ ( ( 𝜒  ∨  𝜓  ∨  𝜃 )  ↔  ( 𝜒  ∨  ( 𝜓  ∨  𝜃 ) ) ) | 
						
							| 5 |  | df-or | ⊢ ( ( 𝜒  ∨  ( 𝜓  ∨  𝜃 ) )  ↔  ( ¬  𝜒  →  ( 𝜓  ∨  𝜃 ) ) ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( ( 𝜒  ∨  𝜓  ∨  𝜃 )  ↔  ( ¬  𝜒  →  ( 𝜓  ∨  𝜃 ) ) ) | 
						
							| 7 | 3 6 | sylib | ⊢ ( 𝜑  →  ( ¬  𝜒  →  ( 𝜓  ∨  𝜃 ) ) ) | 
						
							| 8 | 1 7 | mpd | ⊢ ( 𝜑  →  ( 𝜓  ∨  𝜃 ) ) | 
						
							| 9 |  | orcom | ⊢ ( ( 𝜓  ∨  𝜃 )  ↔  ( 𝜃  ∨  𝜓 ) ) | 
						
							| 10 |  | df-or | ⊢ ( ( 𝜃  ∨  𝜓 )  ↔  ( ¬  𝜃  →  𝜓 ) ) | 
						
							| 11 | 9 10 | bitri | ⊢ ( ( 𝜓  ∨  𝜃 )  ↔  ( ¬  𝜃  →  𝜓 ) ) | 
						
							| 12 | 8 11 | sylib | ⊢ ( 𝜑  →  ( ¬  𝜃  →  𝜓 ) ) | 
						
							| 13 | 2 12 | mpd | ⊢ ( 𝜑  →  𝜓 ) |