Step |
Hyp |
Ref |
Expression |
1 |
|
ecase13d.1 |
⊢ ( 𝜑 → ¬ 𝜒 ) |
2 |
|
ecase13d.2 |
⊢ ( 𝜑 → ¬ 𝜃 ) |
3 |
|
ecase13d.3 |
⊢ ( 𝜑 → ( 𝜒 ∨ 𝜓 ∨ 𝜃 ) ) |
4 |
|
3orass |
⊢ ( ( 𝜒 ∨ 𝜓 ∨ 𝜃 ) ↔ ( 𝜒 ∨ ( 𝜓 ∨ 𝜃 ) ) ) |
5 |
|
df-or |
⊢ ( ( 𝜒 ∨ ( 𝜓 ∨ 𝜃 ) ) ↔ ( ¬ 𝜒 → ( 𝜓 ∨ 𝜃 ) ) ) |
6 |
4 5
|
bitri |
⊢ ( ( 𝜒 ∨ 𝜓 ∨ 𝜃 ) ↔ ( ¬ 𝜒 → ( 𝜓 ∨ 𝜃 ) ) ) |
7 |
3 6
|
sylib |
⊢ ( 𝜑 → ( ¬ 𝜒 → ( 𝜓 ∨ 𝜃 ) ) ) |
8 |
1 7
|
mpd |
⊢ ( 𝜑 → ( 𝜓 ∨ 𝜃 ) ) |
9 |
|
orcom |
⊢ ( ( 𝜓 ∨ 𝜃 ) ↔ ( 𝜃 ∨ 𝜓 ) ) |
10 |
|
df-or |
⊢ ( ( 𝜃 ∨ 𝜓 ) ↔ ( ¬ 𝜃 → 𝜓 ) ) |
11 |
9 10
|
bitri |
⊢ ( ( 𝜓 ∨ 𝜃 ) ↔ ( ¬ 𝜃 → 𝜓 ) ) |
12 |
8 11
|
sylib |
⊢ ( 𝜑 → ( ¬ 𝜃 → 𝜓 ) ) |
13 |
2 12
|
mpd |
⊢ ( 𝜑 → 𝜓 ) |