Metamath Proof Explorer


Theorem imsdf

Description: Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses imsdfn.1 𝑋 = ( BaseSet ‘ 𝑈 )
imsdfn.8 𝐷 = ( IndMet ‘ 𝑈 )
Assertion imsdf ( 𝑈 ∈ NrmCVec → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 imsdfn.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 imsdfn.8 𝐷 = ( IndMet ‘ 𝑈 )
3 eqid ( normCV𝑈 ) = ( normCV𝑈 )
4 1 3 nvf ( 𝑈 ∈ NrmCVec → ( normCV𝑈 ) : 𝑋 ⟶ ℝ )
5 eqid ( −𝑣𝑈 ) = ( −𝑣𝑈 )
6 1 5 nvmf ( 𝑈 ∈ NrmCVec → ( −𝑣𝑈 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
7 fco ( ( ( normCV𝑈 ) : 𝑋 ⟶ ℝ ∧ ( −𝑣𝑈 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → ( ( normCV𝑈 ) ∘ ( −𝑣𝑈 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ )
8 4 6 7 syl2anc ( 𝑈 ∈ NrmCVec → ( ( normCV𝑈 ) ∘ ( −𝑣𝑈 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ )
9 5 3 2 imsval ( 𝑈 ∈ NrmCVec → 𝐷 = ( ( normCV𝑈 ) ∘ ( −𝑣𝑈 ) ) )
10 9 feq1d ( 𝑈 ∈ NrmCVec → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ↔ ( ( normCV𝑈 ) ∘ ( −𝑣𝑈 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) )
11 8 10 mpbird ( 𝑈 ∈ NrmCVec → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ )