| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imsdfn.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
imsdfn.8 |
|- D = ( IndMet ` U ) |
| 3 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
| 4 |
1 3
|
nvf |
|- ( U e. NrmCVec -> ( normCV ` U ) : X --> RR ) |
| 5 |
|
eqid |
|- ( -v ` U ) = ( -v ` U ) |
| 6 |
1 5
|
nvmf |
|- ( U e. NrmCVec -> ( -v ` U ) : ( X X. X ) --> X ) |
| 7 |
|
fco |
|- ( ( ( normCV ` U ) : X --> RR /\ ( -v ` U ) : ( X X. X ) --> X ) -> ( ( normCV ` U ) o. ( -v ` U ) ) : ( X X. X ) --> RR ) |
| 8 |
4 6 7
|
syl2anc |
|- ( U e. NrmCVec -> ( ( normCV ` U ) o. ( -v ` U ) ) : ( X X. X ) --> RR ) |
| 9 |
5 3 2
|
imsval |
|- ( U e. NrmCVec -> D = ( ( normCV ` U ) o. ( -v ` U ) ) ) |
| 10 |
9
|
feq1d |
|- ( U e. NrmCVec -> ( D : ( X X. X ) --> RR <-> ( ( normCV ` U ) o. ( -v ` U ) ) : ( X X. X ) --> RR ) ) |
| 11 |
8 10
|
mpbird |
|- ( U e. NrmCVec -> D : ( X X. X ) --> RR ) |