| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isinag.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | isinag.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | isinag.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | isinag.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 5 |  | isinag.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | isinag.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | isinag.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | inagflat.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 9 |  | inagswap.1 | ⊢ ( 𝜑  →  𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 | isinag | ⊢ ( 𝜑  →  ( 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ↔  ( ( 𝐴  ≠  𝐵  ∧  𝐶  ≠  𝐵  ∧  𝑋  ≠  𝐵 )  ∧  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐶 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) ) | 
						
							| 11 | 9 10 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐵  ∧  𝐶  ≠  𝐵  ∧  𝑋  ≠  𝐵 )  ∧  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐶 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) | 
						
							| 12 | 11 | simpld | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐶  ≠  𝐵  ∧  𝑋  ≠  𝐵 ) ) | 
						
							| 13 | 12 | simp2d | ⊢ ( 𝜑  →  𝐶  ≠  𝐵 ) |