| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indstrd.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 |  | indstrd.2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 3 |  | indstrd.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ  ∧  ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  𝜒 ) )  →  𝜓 ) | 
						
							| 4 |  | indstrd.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  ℕ  ↔  𝐴  ∈  ℕ ) ) | 
						
							| 6 | 5 2 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  ℕ  →  𝜓 )  ↔  ( 𝐴  ∈  ℕ  →  𝜃 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( ( 𝑥  ∈  ℕ  →  𝜓 )  ↔  ( 𝐴  ∈  ℕ  →  𝜃 ) ) ) | 
						
							| 8 | 1 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  𝜒 ) ) ) | 
						
							| 9 |  | bi2.04 | ⊢ ( ( 𝑦  <  𝑥  →  ( 𝜑  →  𝜒 ) )  ↔  ( 𝜑  →  ( 𝑦  <  𝑥  →  𝜒 ) ) ) | 
						
							| 10 | 9 | ralbii | ⊢ ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ( 𝜑  →  𝜒 ) )  ↔  ∀ 𝑦  ∈  ℕ ( 𝜑  →  ( 𝑦  <  𝑥  →  𝜒 ) ) ) | 
						
							| 11 |  | r19.21v | ⊢ ( ∀ 𝑦  ∈  ℕ ( 𝜑  →  ( 𝑦  <  𝑥  →  𝜒 ) )  ↔  ( 𝜑  →  ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  𝜒 ) ) ) | 
						
							| 12 | 10 11 | bitri | ⊢ ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ( 𝜑  →  𝜒 ) )  ↔  ( 𝜑  →  ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  𝜒 ) ) ) | 
						
							| 13 | 3 | 3com12 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝜑  ∧  ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  𝜒 ) )  →  𝜓 ) | 
						
							| 14 | 13 | 3exp | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝜑  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  𝜒 )  →  𝜓 ) ) ) | 
						
							| 15 | 14 | a2d | ⊢ ( 𝑥  ∈  ℕ  →  ( ( 𝜑  →  ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  𝜒 ) )  →  ( 𝜑  →  𝜓 ) ) ) | 
						
							| 16 | 12 15 | biimtrid | ⊢ ( 𝑥  ∈  ℕ  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ( 𝜑  →  𝜒 ) )  →  ( 𝜑  →  𝜓 ) ) ) | 
						
							| 17 | 8 16 | indstr | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 18 | 17 | com12 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℕ  →  𝜓 ) ) | 
						
							| 19 | 4 7 18 | vtocld | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℕ  →  𝜃 ) ) | 
						
							| 20 | 4 19 | mpd | ⊢ ( 𝜑  →  𝜃 ) |