Metamath Proof Explorer


Theorem indstrd

Description: Strong induction, deduction version. (Contributed by Steven Nguyen, 13-Jul-2025)

Ref Expression
Hypotheses indstrd.1 ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) )
indstrd.2 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
indstrd.3 ( ( 𝜑𝑥 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥𝜒 ) ) → 𝜓 )
indstrd.4 ( 𝜑𝐴 ∈ ℕ )
Assertion indstrd ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 indstrd.1 ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) )
2 indstrd.2 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
3 indstrd.3 ( ( 𝜑𝑥 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥𝜒 ) ) → 𝜓 )
4 indstrd.4 ( 𝜑𝐴 ∈ ℕ )
5 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ ℕ ↔ 𝐴 ∈ ℕ ) )
6 5 2 imbi12d ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ℕ → 𝜓 ) ↔ ( 𝐴 ∈ ℕ → 𝜃 ) ) )
7 6 adantl ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝑥 ∈ ℕ → 𝜓 ) ↔ ( 𝐴 ∈ ℕ → 𝜃 ) ) )
8 1 imbi2d ( 𝑥 = 𝑦 → ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) )
9 bi2.04 ( ( 𝑦 < 𝑥 → ( 𝜑𝜒 ) ) ↔ ( 𝜑 → ( 𝑦 < 𝑥𝜒 ) ) )
10 9 ralbii ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ( 𝜑𝜒 ) ) ↔ ∀ 𝑦 ∈ ℕ ( 𝜑 → ( 𝑦 < 𝑥𝜒 ) ) )
11 r19.21v ( ∀ 𝑦 ∈ ℕ ( 𝜑 → ( 𝑦 < 𝑥𝜒 ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥𝜒 ) ) )
12 10 11 bitri ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ( 𝜑𝜒 ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥𝜒 ) ) )
13 3 3com12 ( ( 𝑥 ∈ ℕ ∧ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥𝜒 ) ) → 𝜓 )
14 13 3exp ( 𝑥 ∈ ℕ → ( 𝜑 → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥𝜒 ) → 𝜓 ) ) )
15 14 a2d ( 𝑥 ∈ ℕ → ( ( 𝜑 → ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥𝜒 ) ) → ( 𝜑𝜓 ) ) )
16 12 15 biimtrid ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ( 𝜑𝜒 ) ) → ( 𝜑𝜓 ) ) )
17 8 16 indstr ( 𝑥 ∈ ℕ → ( 𝜑𝜓 ) )
18 17 com12 ( 𝜑 → ( 𝑥 ∈ ℕ → 𝜓 ) )
19 4 7 18 vtocld ( 𝜑 → ( 𝐴 ∈ ℕ → 𝜃 ) )
20 4 19 mpd ( 𝜑𝜃 )