Step |
Hyp |
Ref |
Expression |
1 |
|
indstrd.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
indstrd.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
indstrd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜒 ) ) → 𝜓 ) |
4 |
|
indstrd.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ℕ ↔ 𝐴 ∈ ℕ ) ) |
6 |
5 2
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ℕ → 𝜓 ) ↔ ( 𝐴 ∈ ℕ → 𝜃 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ ℕ → 𝜓 ) ↔ ( 𝐴 ∈ ℕ → 𝜃 ) ) ) |
8 |
1
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
9 |
|
bi2.04 |
⊢ ( ( 𝑦 < 𝑥 → ( 𝜑 → 𝜒 ) ) ↔ ( 𝜑 → ( 𝑦 < 𝑥 → 𝜒 ) ) ) |
10 |
9
|
ralbii |
⊢ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ( 𝜑 → 𝜒 ) ) ↔ ∀ 𝑦 ∈ ℕ ( 𝜑 → ( 𝑦 < 𝑥 → 𝜒 ) ) ) |
11 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ ℕ ( 𝜑 → ( 𝑦 < 𝑥 → 𝜒 ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜒 ) ) ) |
12 |
10 11
|
bitri |
⊢ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ( 𝜑 → 𝜒 ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜒 ) ) ) |
13 |
3
|
3com12 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜒 ) ) → 𝜓 ) |
14 |
13
|
3exp |
⊢ ( 𝑥 ∈ ℕ → ( 𝜑 → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜒 ) → 𝜓 ) ) ) |
15 |
14
|
a2d |
⊢ ( 𝑥 ∈ ℕ → ( ( 𝜑 → ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) ) |
16 |
12 15
|
biimtrid |
⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) ) |
17 |
8 16
|
indstr |
⊢ ( 𝑥 ∈ ℕ → ( 𝜑 → 𝜓 ) ) |
18 |
17
|
com12 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℕ → 𝜓 ) ) |
19 |
4 7 18
|
vtocld |
⊢ ( 𝜑 → ( 𝐴 ∈ ℕ → 𝜃 ) ) |
20 |
4 19
|
mpd |
⊢ ( 𝜑 → 𝜃 ) |