| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpods.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpods.2 | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | grpods.3 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | grpods.4 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 5 |  | grpods.5 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑁  ↑  𝑥 )  =  ( 𝑁  ↑  𝑦 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 )  ↔  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 8 | 7 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  ↔  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 9 | 8 | biimpi | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  →  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  →  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  𝜑 ) | 
						
							| 12 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 13 | 11 12 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  ( 𝜑  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 14 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 15 | 11 3 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  𝐺  ∈  Grp ) | 
						
							| 16 |  | grpmnd | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  𝐺  ∈  Mnd ) | 
						
							| 18 | 11 5 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 19 | 18 | nnnn0d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 20 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 22 | 1 20 2 21 | oddvdsnn0 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑦  ∈  𝐵  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁  ↔  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 23 | 17 12 19 22 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁  ↔  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 24 | 14 23 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 ) | 
						
							| 25 | 13 24 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 ) ) | 
						
							| 26 |  | breq1 | ⊢ ( 𝑚  =  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  →  ( 𝑚  ∥  𝑁  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 ) ) | 
						
							| 27 |  | 1zzd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  1  ∈  ℤ ) | 
						
							| 28 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  𝑁  ∈  ℕ ) | 
						
							| 29 | 28 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  𝑁  ∈  ℤ ) | 
						
							| 30 |  | dvdszrcl | ⊢ ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 31 | 30 | simpld | ⊢ ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 33 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  𝐺  ∈  Grp ) | 
						
							| 34 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  𝐵  ∈  Fin ) | 
						
							| 35 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  𝑦  ∈  𝐵 ) | 
						
							| 36 | 1 20 | odcl2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin  ∧  𝑦  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℕ ) | 
						
							| 37 | 33 34 35 36 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℕ ) | 
						
							| 38 | 37 | nnge1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  1  ≤  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) | 
						
							| 39 | 32 28 | jca | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℤ  ∧  𝑁  ∈  ℕ ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 ) | 
						
							| 41 |  | dvdsle | ⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ≤  𝑁 ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℤ  ∧  𝑁  ∈  ℕ )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ≤  𝑁 ) | 
						
							| 43 | 39 40 42 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ≤  𝑁 ) | 
						
							| 44 | 27 29 32 38 43 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 45 | 26 44 40 | elrabd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } ) | 
						
							| 46 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ) | 
						
							| 47 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) | 
						
							| 48 | 46 35 47 | elrabd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) } ) | 
						
							| 49 |  | eqeq2 | ⊢ ( 𝑘  =  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ) | 
						
							| 50 | 49 | rabbidv | ⊢ ( 𝑘  =  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) } ) | 
						
							| 51 | 50 | eliuni | ⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 }  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) } )  →  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 52 | 45 48 51 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝑁 )  →  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 53 | 25 52 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) )  →  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) )  →  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  →  ( ( 𝑦  ∈  𝐵  ∧  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) )  →  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 56 | 10 55 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  →  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 57 | 56 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  →  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 58 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ↔  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 59 | 58 | biimpi | ⊢ ( 𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  →  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  →  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 61 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  𝜑 ) | 
						
							| 62 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } ) | 
						
							| 63 | 61 62 | jca | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } ) ) | 
						
							| 64 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } ) | 
						
							| 65 | 63 64 | jca | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  ( ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } ) ) | 
						
							| 66 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 }  →  𝑦  ∈  𝐵 ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  𝑦  ∈  𝐵 ) | 
						
							| 68 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  𝜑 ) | 
						
							| 69 |  | breq1 | ⊢ ( 𝑚  =  𝑙  →  ( 𝑚  ∥  𝑁  ↔  𝑙  ∥  𝑁 ) ) | 
						
							| 70 | 69 | elrab | ⊢ ( 𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 }  ↔  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) ) | 
						
							| 71 | 70 | biimpi | ⊢ ( 𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 }  →  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  →  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) ) | 
						
							| 74 | 68 73 | jca | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) ) ) | 
						
							| 75 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) ) | 
						
							| 76 | 75 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 }  ↔  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) ) | 
						
							| 77 | 76 | biimpi | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 }  →  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) ) | 
						
							| 79 | 74 78 | jca | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) ) ) | 
						
							| 80 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  →  𝜑 ) | 
						
							| 81 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  →  𝑙  ∥  𝑁 ) | 
						
							| 82 |  | elfzelz | ⊢ ( 𝑙  ∈  ( 1 ... 𝑁 )  →  𝑙  ∈  ℤ ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 )  →  𝑙  ∈  ℤ ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  →  𝑙  ∈  ℤ ) | 
						
							| 85 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 86 | 85 | nnzd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 87 |  | divides | ⊢ ( ( 𝑙  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑙  ∥  𝑁  ↔  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 ) ) | 
						
							| 88 | 84 86 87 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  →  ( 𝑙  ∥  𝑁  ↔  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 ) ) | 
						
							| 89 | 81 88 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  →  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  →  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 ) | 
						
							| 91 | 80 90 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  →  ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 ) ) | 
						
							| 92 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  →  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) ) | 
						
							| 93 | 91 92 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  →  ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) ) ) | 
						
							| 94 |  | oveq1 | ⊢ ( ( 𝑑  ·  𝑙 )  =  𝑁  →  ( ( 𝑑  ·  𝑙 )  ↑  𝑦 )  =  ( 𝑁  ↑  𝑦 ) ) | 
						
							| 95 | 94 | eqcomd | ⊢ ( ( 𝑑  ·  𝑙 )  =  𝑁  →  ( 𝑁  ↑  𝑦 )  =  ( ( 𝑑  ·  𝑙 )  ↑  𝑦 ) ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  ∧  ( 𝑑  ·  𝑙 )  =  𝑁 )  →  ( 𝑁  ↑  𝑦 )  =  ( ( 𝑑  ·  𝑙 )  ↑  𝑦 ) ) | 
						
							| 97 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) | 
						
							| 98 | 97 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  ( 𝑑  ·  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) )  =  ( 𝑑  ·  𝑙 ) ) | 
						
							| 99 | 98 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  ( 𝑑  ·  𝑙 )  =  ( 𝑑  ·  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ) | 
						
							| 100 | 99 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  ( ( 𝑑  ·  𝑙 )  ↑  𝑦 )  =  ( ( 𝑑  ·  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) )  ↑  𝑦 ) ) | 
						
							| 101 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  𝜑 ) | 
						
							| 102 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  𝑦  ∈  𝐵 ) | 
						
							| 103 | 101 102 | jca | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  ( 𝜑  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 104 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  𝑑  ∈  ℤ ) | 
						
							| 105 | 103 104 | jca | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ ) ) | 
						
							| 106 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  𝐺  ∈  Grp ) | 
						
							| 107 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  𝑑  ∈  ℤ ) | 
						
							| 108 | 1 20 | odcl | ⊢ ( 𝑦  ∈  𝐵  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 109 | 108 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 110 | 109 | nn0zd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 111 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  𝑦  ∈  𝐵 ) | 
						
							| 112 | 107 110 111 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  ( 𝑑  ∈  ℤ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℤ  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 113 | 1 2 | mulgass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑑  ∈  ℤ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∈  ℤ  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑑  ·  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) )  ↑  𝑦 )  =  ( 𝑑  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ↑  𝑦 ) ) ) | 
						
							| 114 | 106 112 113 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  ( ( 𝑑  ·  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) )  ↑  𝑦 )  =  ( 𝑑  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ↑  𝑦 ) ) ) | 
						
							| 115 | 1 20 2 21 | odid | ⊢ ( 𝑦  ∈  𝐵  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 116 | 111 115 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 117 | 116 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  ( 𝑑  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ↑  𝑦 ) )  =  ( 𝑑  ↑  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 118 | 1 2 21 | mulgz | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑑  ∈  ℤ )  →  ( 𝑑  ↑  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 119 | 106 107 118 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  ( 𝑑  ↑  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 120 | 117 119 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  ( 𝑑  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ↑  𝑦 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 121 | 114 120 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑑  ∈  ℤ )  →  ( ( 𝑑  ·  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) )  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 122 | 105 121 | syl | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  ( ( 𝑑  ·  ( ( od ‘ 𝐺 ) ‘ 𝑦 ) )  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 123 | 100 122 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  →  ( ( 𝑑  ·  𝑙 )  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  ∧  ( 𝑑  ·  𝑙 )  =  𝑁 )  →  ( ( 𝑑  ·  𝑙 )  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 125 | 96 124 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  ∧  𝑑  ∈  ℤ )  ∧  ( 𝑑  ·  𝑙 )  =  𝑁 )  →  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 126 |  | nfv | ⊢ Ⅎ 𝑑 ( 𝑐  ·  𝑙 )  =  𝑁 | 
						
							| 127 |  | nfv | ⊢ Ⅎ 𝑐 ( 𝑑  ·  𝑙 )  =  𝑁 | 
						
							| 128 |  | oveq1 | ⊢ ( 𝑐  =  𝑑  →  ( 𝑐  ·  𝑙 )  =  ( 𝑑  ·  𝑙 ) ) | 
						
							| 129 | 128 | eqeq1d | ⊢ ( 𝑐  =  𝑑  →  ( ( 𝑐  ·  𝑙 )  =  𝑁  ↔  ( 𝑑  ·  𝑙 )  =  𝑁 ) ) | 
						
							| 130 | 126 127 129 | cbvrexw | ⊢ ( ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁  ↔  ∃ 𝑑  ∈  ℤ ( 𝑑  ·  𝑙 )  =  𝑁 ) | 
						
							| 131 | 130 | biimpi | ⊢ ( ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁  →  ∃ 𝑑  ∈  ℤ ( 𝑑  ·  𝑙 )  =  𝑁 ) | 
						
							| 132 | 131 | adantl | ⊢ ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  →  ∃ 𝑑  ∈  ℤ ( 𝑑  ·  𝑙 )  =  𝑁 ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  →  ∃ 𝑑  ∈  ℤ ( 𝑑  ·  𝑙 )  =  𝑁 ) | 
						
							| 134 | 125 133 | r19.29a | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑐  ∈  ℤ ( 𝑐  ·  𝑙 )  =  𝑁 )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  →  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 135 | 93 134 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑙  ∥  𝑁 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝑙 ) )  →  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 136 | 79 135 | syl | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  ( 𝑁  ↑  𝑦 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 137 | 7 67 136 | elrabd | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 138 | 65 137 | syl | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∧  𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 139 |  | nfv | ⊢ Ⅎ 𝑙 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } | 
						
							| 140 |  | nfv | ⊢ Ⅎ 𝑘 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } | 
						
							| 141 |  | eqeq2 | ⊢ ( 𝑘  =  𝑙  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 ) ) | 
						
							| 142 | 141 | rabbidv | ⊢ ( 𝑘  =  𝑙  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } ) | 
						
							| 143 | 142 | eleq2d | ⊢ ( 𝑘  =  𝑙  →  ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ↔  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } ) ) | 
						
							| 144 | 139 140 143 | cbvrexw | ⊢ ( ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ↔  ∃ 𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } ) | 
						
							| 145 | 144 | biimpi | ⊢ ( ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  →  ∃ 𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } ) | 
						
							| 146 | 145 | adantl | ⊢ ( ( 𝜑  ∧  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  →  ∃ 𝑙  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑙 } ) | 
						
							| 147 | 138 146 | r19.29a | ⊢ ( ( 𝜑  ∧  ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 148 | 147 | ex | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 149 | 148 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  →  ( ∃ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 150 | 60 149 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 151 | 150 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 152 | 57 151 | impbid | ⊢ ( 𝜑  →  ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  ↔  𝑦  ∈  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 153 | 152 | eqrdv | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  =  ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 154 | 153 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  =  ( ♯ ‘ ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 155 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 156 |  | ssrab2 | ⊢ { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 }  ⊆  ( 1 ... 𝑁 ) | 
						
							| 157 | 156 | a1i | ⊢ ( 𝜑  →  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 }  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 158 | 155 157 | ssfid | ⊢ ( 𝜑  →  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 }  ∈  Fin ) | 
						
							| 159 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  →  𝐵  ∈  Fin ) | 
						
							| 160 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ⊆  𝐵 | 
						
							| 161 | 160 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ⊆  𝐵 ) | 
						
							| 162 | 159 161 | ssfid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∈  Fin ) | 
						
							| 163 |  | animorrl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑖  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑘  =  𝑖 )  →  ( 𝑘  =  𝑖  ∨  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∩  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } )  =  ∅ ) ) | 
						
							| 164 |  | inrab | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∩  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } )  =  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 ) } | 
						
							| 165 | 164 | a1i | ⊢ ( ¬  𝑘  =  𝑖  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∩  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } )  =  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 ) } ) | 
						
							| 166 |  | rabn0 | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 ) }  ≠  ∅  ↔  ∃ 𝑥  ∈  𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 ) ) | 
						
							| 167 | 166 | biimpi | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 ) }  ≠  ∅  →  ∃ 𝑥  ∈  𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 ) ) | 
						
							| 168 |  | eqtr2 | ⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑖 )  →  𝑘  =  𝑖 ) | 
						
							| 169 | 168 | adantl | ⊢ ( ( ( ∃ 𝑥  ∈  𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 )  ∧  𝑤  ∈  𝐵 )  ∧  ( ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑖 ) )  →  𝑘  =  𝑖 ) | 
						
							| 170 |  | nfv | ⊢ Ⅎ 𝑤 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 ) | 
						
							| 171 |  | nfv | ⊢ Ⅎ 𝑥 ( ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑖 ) | 
						
							| 172 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑤  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑘 ) ) | 
						
							| 173 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑤  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑖 ) ) | 
						
							| 174 | 172 173 | anbi12d | ⊢ ( 𝑥  =  𝑤  →  ( ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 )  ↔  ( ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑖 ) ) ) | 
						
							| 175 | 170 171 174 | cbvrexw | ⊢ ( ∃ 𝑥  ∈  𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 )  ↔  ∃ 𝑤  ∈  𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑖 ) ) | 
						
							| 176 | 175 | biimpi | ⊢ ( ∃ 𝑥  ∈  𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 )  →  ∃ 𝑤  ∈  𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝑖 ) ) | 
						
							| 177 | 169 176 | r19.29a | ⊢ ( ∃ 𝑥  ∈  𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 )  →  𝑘  =  𝑖 ) | 
						
							| 178 | 167 177 | syl | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 ) }  ≠  ∅  →  𝑘  =  𝑖 ) | 
						
							| 179 | 178 | necon1bi | ⊢ ( ¬  𝑘  =  𝑖  →  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 ) }  =  ∅ ) | 
						
							| 180 | 165 179 | eqtrd | ⊢ ( ¬  𝑘  =  𝑖  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∩  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } )  =  ∅ ) | 
						
							| 181 | 180 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑖  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  ¬  𝑘  =  𝑖 )  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∩  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } )  =  ∅ ) | 
						
							| 182 | 181 | olcd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑖  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  ¬  𝑘  =  𝑖 )  →  ( 𝑘  =  𝑖  ∨  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∩  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } )  =  ∅ ) ) | 
						
							| 183 | 163 182 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  ∧  𝑖  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  →  ( 𝑘  =  𝑖  ∨  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∩  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } )  =  ∅ ) ) | 
						
							| 184 | 183 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } )  →  ∀ 𝑖  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } ( 𝑘  =  𝑖  ∨  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∩  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } )  =  ∅ ) ) | 
						
							| 185 | 184 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } ∀ 𝑖  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } ( 𝑘  =  𝑖  ∨  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∩  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } )  =  ∅ ) ) | 
						
							| 186 |  | eqeq2 | ⊢ ( 𝑘  =  𝑖  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 ) ) | 
						
							| 187 | 186 | rabbidv | ⊢ ( 𝑘  =  𝑖  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } ) | 
						
							| 188 | 187 | disjor | ⊢ ( Disj  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ↔  ∀ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } ∀ 𝑖  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } ( 𝑘  =  𝑖  ∨  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∩  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑖 } )  =  ∅ ) ) | 
						
							| 189 | 185 188 | sylibr | ⊢ ( 𝜑  →  Disj  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 190 | 158 162 189 | hashiun | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  Σ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 191 | 154 190 | eqtr2d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑚  ∈  ( 1 ... 𝑁 )  ∣  𝑚  ∥  𝑁 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑁  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) |