| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpods.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpods.2 |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 3 |
|
grpods.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 4 |
|
grpods.4 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 5 |
|
grpods.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑁 ↑ 𝑥 ) = ( 𝑁 ↑ 𝑦 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ↔ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) |
| 8 |
7
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) |
| 9 |
8
|
biimpi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } → ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) → ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) |
| 11 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → 𝜑 ) |
| 12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 13 |
11 12
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ) |
| 14 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 15 |
11 3
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → 𝐺 ∈ Grp ) |
| 16 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → 𝐺 ∈ Mnd ) |
| 18 |
11 5
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → 𝑁 ∈ ℕ ) |
| 19 |
18
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 20 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 22 |
1 20 2 21
|
oddvdsnn0 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ↔ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) |
| 23 |
17 12 19 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ↔ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) |
| 24 |
14 23
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) |
| 25 |
13 24
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) ) |
| 26 |
|
breq1 |
⊢ ( 𝑚 = ( ( od ‘ 𝐺 ) ‘ 𝑦 ) → ( 𝑚 ∥ 𝑁 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) ) |
| 27 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → 1 ∈ ℤ ) |
| 28 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 29 |
28
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → 𝑁 ∈ ℤ ) |
| 30 |
|
dvdszrcl |
⊢ ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 → ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 31 |
30
|
simpld |
⊢ ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℤ ) |
| 32 |
31
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℤ ) |
| 33 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → 𝐺 ∈ Grp ) |
| 34 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → 𝐵 ∈ Fin ) |
| 35 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → 𝑦 ∈ 𝐵 ) |
| 36 |
1 20
|
odcl2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℕ ) |
| 37 |
33 34 35 36
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℕ ) |
| 38 |
37
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → 1 ≤ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 39 |
32 28
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) |
| 41 |
|
dvdsle |
⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ≤ 𝑁 ) ) |
| 42 |
41
|
imp |
⊢ ( ( ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ≤ 𝑁 ) |
| 43 |
39 40 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ≤ 𝑁 ) |
| 44 |
27 29 32 38 43
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 1 ... 𝑁 ) ) |
| 45 |
26 44 40
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) |
| 46 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 47 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 48 |
46 35 47
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ( od ‘ 𝐺 ) ‘ 𝑦 ) } ) |
| 49 |
|
eqeq2 |
⊢ ( 𝑘 = ( ( od ‘ 𝐺 ) ‘ 𝑦 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 50 |
49
|
rabbidv |
⊢ ( 𝑘 = ( ( od ‘ 𝐺 ) ‘ 𝑦 ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ( od ‘ 𝐺 ) ‘ 𝑦 ) } ) |
| 51 |
50
|
eliuni |
⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ( od ‘ 𝐺 ) ‘ 𝑦 ) } ) → 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
| 52 |
45 48 51
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝑁 ) → 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
| 53 |
25 52
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) → 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
| 54 |
53
|
ex |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) → 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) → 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
| 56 |
10 55
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) → 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
| 57 |
56
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } → 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
| 58 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ↔ ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
| 59 |
58
|
biimpi |
⊢ ( 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } → ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) → ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
| 61 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → 𝜑 ) |
| 62 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) |
| 63 |
61 62
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ) |
| 64 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) |
| 65 |
63 64
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → ( ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) ) |
| 66 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } → 𝑦 ∈ 𝐵 ) |
| 67 |
66
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → 𝑦 ∈ 𝐵 ) |
| 68 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → 𝜑 ) |
| 69 |
|
breq1 |
⊢ ( 𝑚 = 𝑙 → ( 𝑚 ∥ 𝑁 ↔ 𝑙 ∥ 𝑁 ) ) |
| 70 |
69
|
elrab |
⊢ ( 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ↔ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) |
| 71 |
70
|
biimpi |
⊢ ( 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } → ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) → ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) |
| 74 |
68 73
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) ) |
| 75 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) |
| 76 |
75
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ↔ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) |
| 77 |
76
|
biimpi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } → ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) |
| 79 |
74 78
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ) |
| 80 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) → 𝜑 ) |
| 81 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) → 𝑙 ∥ 𝑁 ) |
| 82 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... 𝑁 ) → 𝑙 ∈ ℤ ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) → 𝑙 ∈ ℤ ) |
| 84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) → 𝑙 ∈ ℤ ) |
| 85 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
| 86 |
85
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 87 |
|
divides |
⊢ ( ( 𝑙 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑙 ∥ 𝑁 ↔ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ) |
| 88 |
84 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) → ( 𝑙 ∥ 𝑁 ↔ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ) |
| 89 |
81 88
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) → ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) |
| 90 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) → ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) |
| 91 |
80 90
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) → ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ) |
| 92 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) → ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) |
| 93 |
91 92
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) → ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ) |
| 94 |
|
oveq1 |
⊢ ( ( 𝑑 · 𝑙 ) = 𝑁 → ( ( 𝑑 · 𝑙 ) ↑ 𝑦 ) = ( 𝑁 ↑ 𝑦 ) ) |
| 95 |
94
|
eqcomd |
⊢ ( ( 𝑑 · 𝑙 ) = 𝑁 → ( 𝑁 ↑ 𝑦 ) = ( ( 𝑑 · 𝑙 ) ↑ 𝑦 ) ) |
| 96 |
95
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) ∧ ( 𝑑 · 𝑙 ) = 𝑁 ) → ( 𝑁 ↑ 𝑦 ) = ( ( 𝑑 · 𝑙 ) ↑ 𝑦 ) ) |
| 97 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) |
| 98 |
97
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → ( 𝑑 · ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝑑 · 𝑙 ) ) |
| 99 |
98
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → ( 𝑑 · 𝑙 ) = ( 𝑑 · ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 100 |
99
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → ( ( 𝑑 · 𝑙 ) ↑ 𝑦 ) = ( ( 𝑑 · ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ↑ 𝑦 ) ) |
| 101 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → 𝜑 ) |
| 102 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → 𝑦 ∈ 𝐵 ) |
| 103 |
101 102
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ) |
| 104 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → 𝑑 ∈ ℤ ) |
| 105 |
103 104
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) ) |
| 106 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → 𝐺 ∈ Grp ) |
| 107 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → 𝑑 ∈ ℤ ) |
| 108 |
1 20
|
odcl |
⊢ ( 𝑦 ∈ 𝐵 → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℕ0 ) |
| 109 |
108
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℕ0 ) |
| 110 |
109
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℤ ) |
| 111 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → 𝑦 ∈ 𝐵 ) |
| 112 |
107 110 111
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → ( 𝑑 ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℤ ∧ 𝑦 ∈ 𝐵 ) ) |
| 113 |
1 2
|
mulgass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑑 ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∈ ℤ ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑑 · ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ↑ 𝑦 ) = ( 𝑑 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ↑ 𝑦 ) ) ) |
| 114 |
106 112 113
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → ( ( 𝑑 · ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ↑ 𝑦 ) = ( 𝑑 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ↑ 𝑦 ) ) ) |
| 115 |
1 20 2 21
|
odid |
⊢ ( 𝑦 ∈ 𝐵 → ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 116 |
111 115
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 117 |
116
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → ( 𝑑 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ↑ 𝑦 ) ) = ( 𝑑 ↑ ( 0g ‘ 𝐺 ) ) ) |
| 118 |
1 2 21
|
mulgz |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑑 ∈ ℤ ) → ( 𝑑 ↑ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 119 |
106 107 118
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → ( 𝑑 ↑ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 120 |
117 119
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → ( 𝑑 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ↑ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 121 |
114 120
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑑 ∈ ℤ ) → ( ( 𝑑 · ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 122 |
105 121
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → ( ( 𝑑 · ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ) ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 123 |
100 122
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) → ( ( 𝑑 · 𝑙 ) ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 124 |
123
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) ∧ ( 𝑑 · 𝑙 ) = 𝑁 ) → ( ( 𝑑 · 𝑙 ) ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 125 |
96 124
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) ∧ 𝑑 ∈ ℤ ) ∧ ( 𝑑 · 𝑙 ) = 𝑁 ) → ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 126 |
|
nfv |
⊢ Ⅎ 𝑑 ( 𝑐 · 𝑙 ) = 𝑁 |
| 127 |
|
nfv |
⊢ Ⅎ 𝑐 ( 𝑑 · 𝑙 ) = 𝑁 |
| 128 |
|
oveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 · 𝑙 ) = ( 𝑑 · 𝑙 ) ) |
| 129 |
128
|
eqeq1d |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑐 · 𝑙 ) = 𝑁 ↔ ( 𝑑 · 𝑙 ) = 𝑁 ) ) |
| 130 |
126 127 129
|
cbvrexw |
⊢ ( ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ↔ ∃ 𝑑 ∈ ℤ ( 𝑑 · 𝑙 ) = 𝑁 ) |
| 131 |
130
|
biimpi |
⊢ ( ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 → ∃ 𝑑 ∈ ℤ ( 𝑑 · 𝑙 ) = 𝑁 ) |
| 132 |
131
|
adantl |
⊢ ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) → ∃ 𝑑 ∈ ℤ ( 𝑑 · 𝑙 ) = 𝑁 ) |
| 133 |
132
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) → ∃ 𝑑 ∈ ℤ ( 𝑑 · 𝑙 ) = 𝑁 ) |
| 134 |
125 133
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑐 ∈ ℤ ( 𝑐 · 𝑙 ) = 𝑁 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) → ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 135 |
93 134
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( 1 ... 𝑁 ) ∧ 𝑙 ∥ 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝑙 ) ) → ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 136 |
79 135
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → ( 𝑁 ↑ 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 137 |
7 67 136
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
| 138 |
65 137
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∧ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
| 139 |
|
nfv |
⊢ Ⅎ 𝑙 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } |
| 140 |
|
nfv |
⊢ Ⅎ 𝑘 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } |
| 141 |
|
eqeq2 |
⊢ ( 𝑘 = 𝑙 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 ) ) |
| 142 |
141
|
rabbidv |
⊢ ( 𝑘 = 𝑙 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) |
| 143 |
142
|
eleq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ↔ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) ) |
| 144 |
139 140 143
|
cbvrexw |
⊢ ( ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ↔ ∃ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) |
| 145 |
144
|
biimpi |
⊢ ( ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } → ∃ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) |
| 146 |
145
|
adantl |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) → ∃ 𝑙 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑙 } ) |
| 147 |
138 146
|
r19.29a |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
| 148 |
147
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
| 149 |
148
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) → ( ∃ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
| 150 |
60 149
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
| 151 |
150
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
| 152 |
57 151
|
impbid |
⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ↔ 𝑦 ∈ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
| 153 |
152
|
eqrdv |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } = ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
| 154 |
153
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) = ( ♯ ‘ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
| 155 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 156 |
|
ssrab2 |
⊢ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) |
| 157 |
156
|
a1i |
⊢ ( 𝜑 → { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
| 158 |
155 157
|
ssfid |
⊢ ( 𝜑 → { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ∈ Fin ) |
| 159 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) → 𝐵 ∈ Fin ) |
| 160 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 |
| 161 |
160
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 ) |
| 162 |
159 161
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin ) |
| 163 |
|
animorrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑖 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑘 = 𝑖 ) → ( 𝑘 = 𝑖 ∨ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∩ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) = ∅ ) ) |
| 164 |
|
inrab |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∩ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) = { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) } |
| 165 |
164
|
a1i |
⊢ ( ¬ 𝑘 = 𝑖 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∩ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) = { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) } ) |
| 166 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) ) |
| 167 |
166
|
biimpi |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) } ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) ) |
| 168 |
|
eqtr2 |
⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑖 ) → 𝑘 = 𝑖 ) |
| 169 |
168
|
adantl |
⊢ ( ( ( ∃ 𝑥 ∈ 𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑖 ) ) → 𝑘 = 𝑖 ) |
| 170 |
|
nfv |
⊢ Ⅎ 𝑤 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) |
| 171 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑖 ) |
| 172 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑤 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑘 ) ) |
| 173 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑤 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑖 ) ) |
| 174 |
172 173
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑖 ) ) ) |
| 175 |
170 171 174
|
cbvrexw |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) ↔ ∃ 𝑤 ∈ 𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑖 ) ) |
| 176 |
175
|
biimpi |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) → ∃ 𝑤 ∈ 𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝑖 ) ) |
| 177 |
169 176
|
r19.29a |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) → 𝑘 = 𝑖 ) |
| 178 |
167 177
|
syl |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) } ≠ ∅ → 𝑘 = 𝑖 ) |
| 179 |
178
|
necon1bi |
⊢ ( ¬ 𝑘 = 𝑖 → { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) } = ∅ ) |
| 180 |
165 179
|
eqtrd |
⊢ ( ¬ 𝑘 = 𝑖 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∩ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) = ∅ ) |
| 181 |
180
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑖 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ ¬ 𝑘 = 𝑖 ) → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∩ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) = ∅ ) |
| 182 |
181
|
olcd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑖 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ ¬ 𝑘 = 𝑖 ) → ( 𝑘 = 𝑖 ∨ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∩ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) = ∅ ) ) |
| 183 |
163 182
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) ∧ 𝑖 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) → ( 𝑘 = 𝑖 ∨ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∩ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) = ∅ ) ) |
| 184 |
183
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ) → ∀ 𝑖 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ( 𝑘 = 𝑖 ∨ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∩ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) = ∅ ) ) |
| 185 |
184
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ∀ 𝑖 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ( 𝑘 = 𝑖 ∨ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∩ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) = ∅ ) ) |
| 186 |
|
eqeq2 |
⊢ ( 𝑘 = 𝑖 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 ) ) |
| 187 |
186
|
rabbidv |
⊢ ( 𝑘 = 𝑖 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) |
| 188 |
187
|
disjor |
⊢ ( Disj 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ↔ ∀ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ∀ 𝑖 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ( 𝑘 = 𝑖 ∨ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∩ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑖 } ) = ∅ ) ) |
| 189 |
185 188
|
sylibr |
⊢ ( 𝜑 → Disj 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
| 190 |
158 162 189
|
hashiun |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = Σ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
| 191 |
154 190
|
eqtr2d |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑚 ∈ ( 1 ... 𝑁 ) ∣ 𝑚 ∥ 𝑁 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑁 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |