| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitscyglem1.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | unitscyglem1.2 | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | unitscyglem1.3 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | unitscyglem1.4 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 5 |  | unitscyglem1.5 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛 ) | 
						
							| 6 |  | unitscyglem1.6 | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑛  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  →  ( 𝑛  ↑  𝑥 )  =  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑛  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  →  ( ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 )  ↔  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 9 | 8 | rabbidv | ⊢ ( 𝑛  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  →  { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  =  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑛  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 11 |  | id | ⊢ ( 𝑛  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  →  𝑛  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) | 
						
							| 12 | 10 11 | breq12d | ⊢ ( 𝑛  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛  ↔  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 14 | 1 13 | odcl2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin  ∧  𝐴  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 15 | 3 4 6 14 | syl3anc | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 16 | 12 5 15 | rspcdva | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  =  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) | 
						
							| 18 | 1 13 2 17 | dfod2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  if ( ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ) ,  0 ) ) | 
						
							| 19 | 3 6 18 | syl2anc | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  if ( ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ) ,  0 ) ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℤ )  →  𝐺  ∈  Grp ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℤ )  →  𝑖  ∈  ℤ ) | 
						
							| 22 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℤ )  →  𝐴  ∈  𝐵 ) | 
						
							| 23 | 1 2 20 21 22 | mulgcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ↑  𝐴 )  ∈  𝐵 ) | 
						
							| 24 | 23 | fmpttd | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) : ℤ ⟶ 𝐵 ) | 
						
							| 25 |  | frn | ⊢ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) : ℤ ⟶ 𝐵  →  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  ⊆  𝐵 ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  ⊆  𝐵 ) | 
						
							| 27 | 4 26 | ssfid | ⊢ ( 𝜑  →  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  ∈  Fin ) | 
						
							| 28 | 27 | iftrued | ⊢ ( 𝜑  →  if ( ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ) ,  0 )  =  ( ♯ ‘ ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ) ) | 
						
							| 29 | 19 28 | eqtrd | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  ( ♯ ‘ ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ) ) | 
						
							| 30 |  | eqid | ⊢ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  =  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } | 
						
							| 31 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  ∈  V ) | 
						
							| 32 | 1 31 | eqeltrid | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 33 | 30 32 | rabexd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  ∈  V ) | 
						
							| 34 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ↑  𝐴 )  ∈  V ) | 
						
							| 35 | 34 | fmpttd | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) : ℤ ⟶ V ) | 
						
							| 36 | 35 | ffnd | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  Fn  ℤ ) | 
						
							| 37 |  | fvelrnb | ⊢ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  Fn  ℤ  →  ( 𝑦  ∈  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  ↔  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( 𝜑  →  ( 𝑦  ∈  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  ↔  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 39 | 38 | biimpa | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) )  →  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 ) | 
						
							| 40 |  | id | ⊢ ( ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦  →  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦 ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦  →  𝑦  =  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 )  ∧  𝑤  ∈  ℤ )  ∧  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦 )  →  𝑦  =  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 ) ) | 
						
							| 43 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 )  ∧  𝑤  ∈  ℤ )  →  𝜑 ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 )  ∧  𝑤  ∈  ℤ )  →  𝑤  ∈  ℤ ) | 
						
							| 45 | 43 44 | jca | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 )  ∧  𝑤  ∈  ℤ )  →  ( 𝜑  ∧  𝑤  ∈  ℤ ) ) | 
						
							| 46 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  =  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℤ )  ∧  𝑖  =  𝑤 )  →  𝑖  =  𝑤 ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℤ )  ∧  𝑖  =  𝑤 )  →  ( 𝑖  ↑  𝐴 )  =  ( 𝑤  ↑  𝐴 ) ) | 
						
							| 49 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  𝑤  ∈  ℤ ) | 
						
							| 50 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( 𝑤  ↑  𝐴 )  ∈  V ) | 
						
							| 51 | 46 48 49 50 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  ( 𝑤  ↑  𝐴 ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑤  ↑  𝐴 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  ( 𝑤  ↑  𝐴 ) ) ) | 
						
							| 53 | 52 | eqeq1d | ⊢ ( 𝑥  =  ( 𝑤  ↑  𝐴 )  →  ( ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 )  ↔  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  ( 𝑤  ↑  𝐴 ) )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 54 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  𝐺  ∈  Grp ) | 
						
							| 55 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  𝐴  ∈  𝐵 ) | 
						
							| 56 | 1 2 54 49 55 | mulgcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( 𝑤  ↑  𝐴 )  ∈  𝐵 ) | 
						
							| 57 | 15 | nnzd | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 59 | 49 58 55 | 3jca | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( 𝑤  ∈  ℤ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℤ  ∧  𝐴  ∈  𝐵 ) ) | 
						
							| 60 | 1 2 | mulgass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑤  ∈  ℤ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℤ  ∧  𝐴  ∈  𝐵 ) )  →  ( ( 𝑤  ·  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ↑  𝐴 )  =  ( 𝑤  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝐴 ) ) ) | 
						
							| 61 | 54 59 60 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( ( 𝑤  ·  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ↑  𝐴 )  =  ( 𝑤  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝐴 ) ) ) | 
						
							| 62 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 63 | 1 13 2 62 | odid | ⊢ ( 𝐴  ∈  𝐵  →  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝐴 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 64 | 55 63 | syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝐴 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 65 | 64 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( 𝑤  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝐴 ) )  =  ( 𝑤  ↑  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 66 | 1 2 62 | mulgz | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑤  ∈  ℤ )  →  ( 𝑤  ↑  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 67 | 3 66 | sylan | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( 𝑤  ↑  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 68 | 65 67 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( 𝑤  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝐴 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 69 | 61 68 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( 0g ‘ 𝐺 )  =  ( ( 𝑤  ·  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ↑  𝐴 ) ) | 
						
							| 70 | 59 | simp2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 71 | 70 49 55 | 3jca | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℤ  ∧  𝑤  ∈  ℤ  ∧  𝐴  ∈  𝐵 ) ) | 
						
							| 72 | 1 2 | mulgassr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℤ  ∧  𝑤  ∈  ℤ  ∧  𝐴  ∈  𝐵 ) )  →  ( ( 𝑤  ·  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ↑  𝐴 )  =  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  ( 𝑤  ↑  𝐴 ) ) ) | 
						
							| 73 | 54 71 72 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( ( 𝑤  ·  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ↑  𝐴 )  =  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  ( 𝑤  ↑  𝐴 ) ) ) | 
						
							| 74 | 69 73 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  ( 𝑤  ↑  𝐴 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 75 | 53 56 74 | elrabd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( 𝑤  ↑  𝐴 )  ∈  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 76 | 51 75 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℤ )  →  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  ∈  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 77 | 45 76 | syl | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 )  ∧  𝑤  ∈  ℤ )  →  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  ∈  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 )  ∧  𝑤  ∈  ℤ )  ∧  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦 )  →  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  ∈  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 79 | 42 78 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 )  ∧  𝑤  ∈  ℤ )  ∧  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦 )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 80 |  | nfv | ⊢ Ⅎ 𝑤 ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 | 
						
							| 81 |  | nfv | ⊢ Ⅎ 𝑧 ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦 | 
						
							| 82 |  | fveqeq2 | ⊢ ( 𝑧  =  𝑤  →  ( ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦  ↔  ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦 ) ) | 
						
							| 83 | 80 81 82 | cbvrexw | ⊢ ( ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦  ↔  ∃ 𝑤  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦 ) | 
						
							| 84 | 83 | biimpi | ⊢ ( ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦  →  ∃ 𝑤  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦 ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( 𝜑  ∧  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 )  →  ∃ 𝑤  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑤 )  =  𝑦 ) | 
						
							| 86 | 79 85 | r19.29a | ⊢ ( ( 𝜑  ∧  ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦 )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 87 | 86 | ex | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) )  →  ( ∃ 𝑧  ∈  ℤ ( ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) ‘ 𝑧 )  =  𝑦  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 89 | 39 88 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 90 | 89 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 91 | 90 | ssrdv | ⊢ ( 𝜑  →  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  ⊆  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 92 |  | hashss | ⊢ ( ( { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  ∈  V  ∧  ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) )  ⊆  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  →  ( ♯ ‘ ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) )  ≤  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 93 | 33 91 92 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ran  ( 𝑖  ∈  ℤ  ↦  ( 𝑖  ↑  𝐴 ) ) )  ≤  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 94 | 29 93 | eqbrtrd | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ≤  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 95 | 16 94 | jca | ⊢ ( 𝜑  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ≤  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) ) | 
						
							| 96 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  ⊆  𝐵 | 
						
							| 97 | 96 | a1i | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  ⊆  𝐵 ) | 
						
							| 98 | 4 97 | ssfid | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  ∈  Fin ) | 
						
							| 99 |  | hashcl | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  ∈  Fin  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ∈  ℕ0 ) | 
						
							| 100 | 98 99 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ∈  ℕ0 ) | 
						
							| 101 | 100 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ∈  ℝ ) | 
						
							| 102 | 15 | nnred | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 103 | 101 102 | letri3d | ⊢ ( 𝜑  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↔  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ≤  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) ) ) | 
						
							| 104 | 95 103 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) |