Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem1.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
unitscyglem1.2 |
⊢ ↑ = ( .g ‘ 𝐺 ) |
3 |
|
unitscyglem1.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
4 |
|
unitscyglem1.4 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
5 |
|
unitscyglem1.5 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ) |
6 |
|
unitscyglem1.6 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
7 |
|
oveq1 |
⊢ ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → ( 𝑛 ↑ 𝑥 ) = ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → ( ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
9 |
8
|
rabbidv |
⊢ ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
10 |
9
|
fveq2d |
⊢ ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
11 |
|
id |
⊢ ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) |
12 |
10 11
|
breq12d |
⊢ ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ↔ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
13 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
14 |
1 13
|
odcl2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝐴 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℕ ) |
15 |
3 4 6 14
|
syl3anc |
⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℕ ) |
16 |
12 5 15
|
rspcdva |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) |
17 |
|
eqid |
⊢ ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) = ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) |
18 |
1 13 2 17
|
dfod2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = if ( ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) , 0 ) ) |
19 |
3 6 18
|
syl2anc |
⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = if ( ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) , 0 ) ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → 𝐺 ∈ Grp ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → 𝑖 ∈ ℤ ) |
22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → 𝐴 ∈ 𝐵 ) |
23 |
1 2 20 21 22
|
mulgcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → ( 𝑖 ↑ 𝐴 ) ∈ 𝐵 ) |
24 |
23
|
fmpttd |
⊢ ( 𝜑 → ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) : ℤ ⟶ 𝐵 ) |
25 |
|
frn |
⊢ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) : ℤ ⟶ 𝐵 → ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ⊆ 𝐵 ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ⊆ 𝐵 ) |
27 |
4 26
|
ssfid |
⊢ ( 𝜑 → ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ∈ Fin ) |
28 |
27
|
iftrued |
⊢ ( 𝜑 → if ( ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) , 0 ) = ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) ) |
29 |
19 28
|
eqtrd |
⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) ) |
30 |
|
eqid |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } |
31 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ∈ V ) |
32 |
1 31
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
33 |
30 32
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ∈ V ) |
34 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → ( 𝑖 ↑ 𝐴 ) ∈ V ) |
35 |
34
|
fmpttd |
⊢ ( 𝜑 → ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) : ℤ ⟶ V ) |
36 |
35
|
ffnd |
⊢ ( 𝜑 → ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) Fn ℤ ) |
37 |
|
fvelrnb |
⊢ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) Fn ℤ → ( 𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ) |
38 |
36 37
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ) |
39 |
38
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) → ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) |
40 |
|
id |
⊢ ( ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 → ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) |
41 |
40
|
eqcomd |
⊢ ( ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 → 𝑦 = ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) ) |
42 |
41
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) → 𝑦 = ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) ) |
43 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) → 𝜑 ) |
44 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) → 𝑤 ∈ ℤ ) |
45 |
43 44
|
jca |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) → ( 𝜑 ∧ 𝑤 ∈ ℤ ) ) |
46 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) = ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) ∧ 𝑖 = 𝑤 ) → 𝑖 = 𝑤 ) |
48 |
47
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) ∧ 𝑖 = 𝑤 ) → ( 𝑖 ↑ 𝐴 ) = ( 𝑤 ↑ 𝐴 ) ) |
49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → 𝑤 ∈ ℤ ) |
50 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( 𝑤 ↑ 𝐴 ) ∈ V ) |
51 |
46 48 49 50
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = ( 𝑤 ↑ 𝐴 ) ) |
52 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑤 ↑ 𝐴 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ ( 𝑤 ↑ 𝐴 ) ) ) |
53 |
52
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑤 ↑ 𝐴 ) → ( ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ ( 𝑤 ↑ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) ) |
54 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → 𝐺 ∈ Grp ) |
55 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → 𝐴 ∈ 𝐵 ) |
56 |
1 2 54 49 55
|
mulgcld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( 𝑤 ↑ 𝐴 ) ∈ 𝐵 ) |
57 |
15
|
nnzd |
⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ) |
59 |
49 58 55
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( 𝑤 ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ∧ 𝐴 ∈ 𝐵 ) ) |
60 |
1 2
|
mulgass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑤 ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ∧ 𝐴 ∈ 𝐵 ) ) → ( ( 𝑤 · ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 𝐴 ) = ( 𝑤 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝐴 ) ) ) |
61 |
54 59 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( ( 𝑤 · ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 𝐴 ) = ( 𝑤 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝐴 ) ) ) |
62 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
63 |
1 13 2 62
|
odid |
⊢ ( 𝐴 ∈ 𝐵 → ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
64 |
55 63
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
65 |
64
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( 𝑤 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝐴 ) ) = ( 𝑤 ↑ ( 0g ‘ 𝐺 ) ) ) |
66 |
1 2 62
|
mulgz |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ ℤ ) → ( 𝑤 ↑ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
67 |
3 66
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( 𝑤 ↑ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
68 |
65 67
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( 𝑤 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
69 |
61 68
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( 0g ‘ 𝐺 ) = ( ( 𝑤 · ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 𝐴 ) ) |
70 |
59
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ) |
71 |
70 49 55
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴 ∈ 𝐵 ) ) |
72 |
1 2
|
mulgassr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴 ∈ 𝐵 ) ) → ( ( 𝑤 · ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 𝐴 ) = ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ ( 𝑤 ↑ 𝐴 ) ) ) |
73 |
54 71 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( ( 𝑤 · ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 𝐴 ) = ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ ( 𝑤 ↑ 𝐴 ) ) ) |
74 |
69 73
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ ( 𝑤 ↑ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
75 |
53 56 74
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( 𝑤 ↑ 𝐴 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
76 |
51 75
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℤ ) → ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
77 |
45 76
|
syl |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) → ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
78 |
77
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) → ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
79 |
42 78
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
80 |
|
nfv |
⊢ Ⅎ 𝑤 ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 |
81 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 |
82 |
|
fveqeq2 |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ↔ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) ) |
83 |
80 81 82
|
cbvrexw |
⊢ ( ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑤 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) |
84 |
83
|
biimpi |
⊢ ( ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 → ∃ 𝑤 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) |
85 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) → ∃ 𝑤 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) |
86 |
79 85
|
r19.29a |
⊢ ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
87 |
86
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) → ( ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
89 |
39 88
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
90 |
89
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
91 |
90
|
ssrdv |
⊢ ( 𝜑 → ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
92 |
|
hashss |
⊢ ( ( { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ∈ V ∧ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ⊆ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) → ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
93 |
33 91 92
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 ↑ 𝐴 ) ) ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
94 |
29 93
|
eqbrtrd |
⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
95 |
16 94
|
jca |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) ) |
96 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ⊆ 𝐵 |
97 |
96
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ⊆ 𝐵 ) |
98 |
4 97
|
ssfid |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ∈ Fin ) |
99 |
|
hashcl |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ∈ ℕ0 ) |
100 |
98 99
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ∈ ℕ0 ) |
101 |
100
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ∈ ℝ ) |
102 |
15
|
nnred |
⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℝ ) |
103 |
101 102
|
letri3d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↔ ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) ) ) |
104 |
95 103
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) |