Metamath Proof Explorer


Theorem unitscyglem1

Description: Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025)

Ref Expression
Hypotheses unitscyglem1.1 𝐵 = ( Base ‘ 𝐺 )
unitscyglem1.2 = ( .g𝐺 )
unitscyglem1.3 ( 𝜑𝐺 ∈ Grp )
unitscyglem1.4 ( 𝜑𝐵 ∈ Fin )
unitscyglem1.5 ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } ) ≤ 𝑛 )
unitscyglem1.6 ( 𝜑𝐴𝐵 )
Assertion unitscyglem1 ( 𝜑 → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 unitscyglem1.1 𝐵 = ( Base ‘ 𝐺 )
2 unitscyglem1.2 = ( .g𝐺 )
3 unitscyglem1.3 ( 𝜑𝐺 ∈ Grp )
4 unitscyglem1.4 ( 𝜑𝐵 ∈ Fin )
5 unitscyglem1.5 ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } ) ≤ 𝑛 )
6 unitscyglem1.6 ( 𝜑𝐴𝐵 )
7 oveq1 ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → ( 𝑛 𝑥 ) = ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) )
8 7 eqeq1d ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → ( ( 𝑛 𝑥 ) = ( 0g𝐺 ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) ) )
9 8 rabbidv ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } = { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } )
10 9 fveq2d ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } ) = ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) )
11 id ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )
12 10 11 breq12d ( 𝑛 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) → ( ( ♯ ‘ { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } ) ≤ 𝑛 ↔ ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) ≤ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) )
13 eqid ( od ‘ 𝐺 ) = ( od ‘ 𝐺 )
14 1 13 odcl2 ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝐴𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℕ )
15 3 4 6 14 syl3anc ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℕ )
16 12 5 15 rspcdva ( 𝜑 → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) ≤ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )
17 eqid ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) = ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) )
18 1 13 2 17 dfod2 ( ( 𝐺 ∈ Grp ∧ 𝐴𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = if ( ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ) , 0 ) )
19 3 6 18 syl2anc ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = if ( ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ) , 0 ) )
20 3 adantr ( ( 𝜑𝑖 ∈ ℤ ) → 𝐺 ∈ Grp )
21 simpr ( ( 𝜑𝑖 ∈ ℤ ) → 𝑖 ∈ ℤ )
22 6 adantr ( ( 𝜑𝑖 ∈ ℤ ) → 𝐴𝐵 )
23 1 2 20 21 22 mulgcld ( ( 𝜑𝑖 ∈ ℤ ) → ( 𝑖 𝐴 ) ∈ 𝐵 )
24 23 fmpttd ( 𝜑 → ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) : ℤ ⟶ 𝐵 )
25 frn ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) : ℤ ⟶ 𝐵 → ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ⊆ 𝐵 )
26 24 25 syl ( 𝜑 → ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ⊆ 𝐵 )
27 4 26 ssfid ( 𝜑 → ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ∈ Fin )
28 27 iftrued ( 𝜑 → if ( ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ) , 0 ) = ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ) )
29 19 28 eqtrd ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ) )
30 eqid { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } = { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) }
31 fvexd ( 𝜑 → ( Base ‘ 𝐺 ) ∈ V )
32 1 31 eqeltrid ( 𝜑𝐵 ∈ V )
33 30 32 rabexd ( 𝜑 → { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ∈ V )
34 ovexd ( ( 𝜑𝑖 ∈ ℤ ) → ( 𝑖 𝐴 ) ∈ V )
35 34 fmpttd ( 𝜑 → ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) : ℤ ⟶ V )
36 35 ffnd ( 𝜑 → ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) Fn ℤ )
37 fvelrnb ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) Fn ℤ → ( 𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) )
38 36 37 syl ( 𝜑 → ( 𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) )
39 38 biimpa ( ( 𝜑𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ) → ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 )
40 id ( ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦 → ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦 )
41 40 eqcomd ( ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦𝑦 = ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) )
42 41 adantl ( ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) → 𝑦 = ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) )
43 simpll ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) → 𝜑 )
44 simpr ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) → 𝑤 ∈ ℤ )
45 43 44 jca ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) → ( 𝜑𝑤 ∈ ℤ ) )
46 eqidd ( ( 𝜑𝑤 ∈ ℤ ) → ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) = ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) )
47 simpr ( ( ( 𝜑𝑤 ∈ ℤ ) ∧ 𝑖 = 𝑤 ) → 𝑖 = 𝑤 )
48 47 oveq1d ( ( ( 𝜑𝑤 ∈ ℤ ) ∧ 𝑖 = 𝑤 ) → ( 𝑖 𝐴 ) = ( 𝑤 𝐴 ) )
49 simpr ( ( 𝜑𝑤 ∈ ℤ ) → 𝑤 ∈ ℤ )
50 ovexd ( ( 𝜑𝑤 ∈ ℤ ) → ( 𝑤 𝐴 ) ∈ V )
51 46 48 49 50 fvmptd ( ( 𝜑𝑤 ∈ ℤ ) → ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = ( 𝑤 𝐴 ) )
52 oveq2 ( 𝑥 = ( 𝑤 𝐴 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ( 𝑤 𝐴 ) ) )
53 52 eqeq1d ( 𝑥 = ( 𝑤 𝐴 ) → ( ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ( 𝑤 𝐴 ) ) = ( 0g𝐺 ) ) )
54 3 adantr ( ( 𝜑𝑤 ∈ ℤ ) → 𝐺 ∈ Grp )
55 6 adantr ( ( 𝜑𝑤 ∈ ℤ ) → 𝐴𝐵 )
56 1 2 54 49 55 mulgcld ( ( 𝜑𝑤 ∈ ℤ ) → ( 𝑤 𝐴 ) ∈ 𝐵 )
57 15 nnzd ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ )
58 57 adantr ( ( 𝜑𝑤 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ )
59 49 58 55 3jca ( ( 𝜑𝑤 ∈ ℤ ) → ( 𝑤 ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ∧ 𝐴𝐵 ) )
60 1 2 mulgass ( ( 𝐺 ∈ Grp ∧ ( 𝑤 ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ∧ 𝐴𝐵 ) ) → ( ( 𝑤 · ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) 𝐴 ) = ( 𝑤 ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝐴 ) ) )
61 54 59 60 syl2anc ( ( 𝜑𝑤 ∈ ℤ ) → ( ( 𝑤 · ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) 𝐴 ) = ( 𝑤 ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝐴 ) ) )
62 eqid ( 0g𝐺 ) = ( 0g𝐺 )
63 1 13 2 62 odid ( 𝐴𝐵 → ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝐴 ) = ( 0g𝐺 ) )
64 55 63 syl ( ( 𝜑𝑤 ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝐴 ) = ( 0g𝐺 ) )
65 64 oveq2d ( ( 𝜑𝑤 ∈ ℤ ) → ( 𝑤 ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝐴 ) ) = ( 𝑤 ( 0g𝐺 ) ) )
66 1 2 62 mulgz ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ ℤ ) → ( 𝑤 ( 0g𝐺 ) ) = ( 0g𝐺 ) )
67 3 66 sylan ( ( 𝜑𝑤 ∈ ℤ ) → ( 𝑤 ( 0g𝐺 ) ) = ( 0g𝐺 ) )
68 65 67 eqtrd ( ( 𝜑𝑤 ∈ ℤ ) → ( 𝑤 ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝐴 ) ) = ( 0g𝐺 ) )
69 61 68 eqtr2d ( ( 𝜑𝑤 ∈ ℤ ) → ( 0g𝐺 ) = ( ( 𝑤 · ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) 𝐴 ) )
70 59 simp2d ( ( 𝜑𝑤 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ )
71 70 49 55 3jca ( ( 𝜑𝑤 ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵 ) )
72 1 2 mulgassr ( ( 𝐺 ∈ Grp ∧ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵 ) ) → ( ( 𝑤 · ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) 𝐴 ) = ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ( 𝑤 𝐴 ) ) )
73 54 71 72 syl2anc ( ( 𝜑𝑤 ∈ ℤ ) → ( ( 𝑤 · ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) 𝐴 ) = ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ( 𝑤 𝐴 ) ) )
74 69 73 eqtr2d ( ( 𝜑𝑤 ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ( 𝑤 𝐴 ) ) = ( 0g𝐺 ) )
75 53 56 74 elrabd ( ( 𝜑𝑤 ∈ ℤ ) → ( 𝑤 𝐴 ) ∈ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } )
76 51 75 eqeltrd ( ( 𝜑𝑤 ∈ ℤ ) → ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) ∈ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } )
77 45 76 syl ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) → ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) ∈ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } )
78 77 adantr ( ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) → ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) ∈ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } )
79 42 78 eqeltrd ( ( ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) → 𝑦 ∈ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } )
80 nfv 𝑤 ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦
81 nfv 𝑧 ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦
82 fveqeq2 ( 𝑧 = 𝑤 → ( ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ↔ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦 ) )
83 80 81 82 cbvrexw ( ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑤 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦 )
84 83 biimpi ( ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 → ∃ 𝑤 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦 )
85 84 adantl ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) → ∃ 𝑤 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑤 ) = 𝑦 )
86 79 85 r19.29a ( ( 𝜑 ∧ ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦 ) → 𝑦 ∈ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } )
87 86 ex ( 𝜑 → ( ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦𝑦 ∈ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) )
88 87 adantr ( ( 𝜑𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ) → ( ∃ 𝑧 ∈ ℤ ( ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ‘ 𝑧 ) = 𝑦𝑦 ∈ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) )
89 39 88 mpd ( ( 𝜑𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ) → 𝑦 ∈ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } )
90 89 ex ( 𝜑 → ( 𝑦 ∈ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) → 𝑦 ∈ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) )
91 90 ssrdv ( 𝜑 → ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ⊆ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } )
92 hashss ( ( { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ∈ V ∧ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ⊆ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) → ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ) ≤ ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) )
93 33 91 92 syl2anc ( 𝜑 → ( ♯ ‘ ran ( 𝑖 ∈ ℤ ↦ ( 𝑖 𝐴 ) ) ) ≤ ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) )
94 29 93 eqbrtrd ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ≤ ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) )
95 16 94 jca ( 𝜑 → ( ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) ≤ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ≤ ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) ) )
96 ssrab2 { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ⊆ 𝐵
97 96 a1i ( 𝜑 → { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ⊆ 𝐵 )
98 4 97 ssfid ( 𝜑 → { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ∈ Fin )
99 hashcl ( { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ∈ Fin → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) ∈ ℕ0 )
100 98 99 syl ( 𝜑 → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) ∈ ℕ0 )
101 100 nn0red ( 𝜑 → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) ∈ ℝ )
102 15 nnred ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℝ )
103 101 102 letri3d ( 𝜑 → ( ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↔ ( ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) ≤ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ≤ ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) ) ) )
104 95 103 mpbird ( 𝜑 → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) 𝑥 ) = ( 0g𝐺 ) } ) = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )