| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitscyglem1.1 |
|- B = ( Base ` G ) |
| 2 |
|
unitscyglem1.2 |
|- .^ = ( .g ` G ) |
| 3 |
|
unitscyglem1.3 |
|- ( ph -> G e. Grp ) |
| 4 |
|
unitscyglem1.4 |
|- ( ph -> B e. Fin ) |
| 5 |
|
unitscyglem1.5 |
|- ( ph -> A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n ) |
| 6 |
|
unitscyglem1.6 |
|- ( ph -> A e. B ) |
| 7 |
|
oveq1 |
|- ( n = ( ( od ` G ) ` A ) -> ( n .^ x ) = ( ( ( od ` G ) ` A ) .^ x ) ) |
| 8 |
7
|
eqeq1d |
|- ( n = ( ( od ` G ) ` A ) -> ( ( n .^ x ) = ( 0g ` G ) <-> ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) ) ) |
| 9 |
8
|
rabbidv |
|- ( n = ( ( od ` G ) ` A ) -> { x e. B | ( n .^ x ) = ( 0g ` G ) } = { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) |
| 10 |
9
|
fveq2d |
|- ( n = ( ( od ` G ) ` A ) -> ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) = ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) |
| 11 |
|
id |
|- ( n = ( ( od ` G ) ` A ) -> n = ( ( od ` G ) ` A ) ) |
| 12 |
10 11
|
breq12d |
|- ( n = ( ( od ` G ) ` A ) -> ( ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n <-> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) <_ ( ( od ` G ) ` A ) ) ) |
| 13 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
| 14 |
1 13
|
odcl2 |
|- ( ( G e. Grp /\ B e. Fin /\ A e. B ) -> ( ( od ` G ) ` A ) e. NN ) |
| 15 |
3 4 6 14
|
syl3anc |
|- ( ph -> ( ( od ` G ) ` A ) e. NN ) |
| 16 |
12 5 15
|
rspcdva |
|- ( ph -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) <_ ( ( od ` G ) ` A ) ) |
| 17 |
|
eqid |
|- ( i e. ZZ |-> ( i .^ A ) ) = ( i e. ZZ |-> ( i .^ A ) ) |
| 18 |
1 13 2 17
|
dfod2 |
|- ( ( G e. Grp /\ A e. B ) -> ( ( od ` G ) ` A ) = if ( ran ( i e. ZZ |-> ( i .^ A ) ) e. Fin , ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) , 0 ) ) |
| 19 |
3 6 18
|
syl2anc |
|- ( ph -> ( ( od ` G ) ` A ) = if ( ran ( i e. ZZ |-> ( i .^ A ) ) e. Fin , ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) , 0 ) ) |
| 20 |
3
|
adantr |
|- ( ( ph /\ i e. ZZ ) -> G e. Grp ) |
| 21 |
|
simpr |
|- ( ( ph /\ i e. ZZ ) -> i e. ZZ ) |
| 22 |
6
|
adantr |
|- ( ( ph /\ i e. ZZ ) -> A e. B ) |
| 23 |
1 2 20 21 22
|
mulgcld |
|- ( ( ph /\ i e. ZZ ) -> ( i .^ A ) e. B ) |
| 24 |
23
|
fmpttd |
|- ( ph -> ( i e. ZZ |-> ( i .^ A ) ) : ZZ --> B ) |
| 25 |
|
frn |
|- ( ( i e. ZZ |-> ( i .^ A ) ) : ZZ --> B -> ran ( i e. ZZ |-> ( i .^ A ) ) C_ B ) |
| 26 |
24 25
|
syl |
|- ( ph -> ran ( i e. ZZ |-> ( i .^ A ) ) C_ B ) |
| 27 |
4 26
|
ssfid |
|- ( ph -> ran ( i e. ZZ |-> ( i .^ A ) ) e. Fin ) |
| 28 |
27
|
iftrued |
|- ( ph -> if ( ran ( i e. ZZ |-> ( i .^ A ) ) e. Fin , ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) , 0 ) = ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) ) |
| 29 |
19 28
|
eqtrd |
|- ( ph -> ( ( od ` G ) ` A ) = ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) ) |
| 30 |
|
eqid |
|- { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } = { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } |
| 31 |
|
fvexd |
|- ( ph -> ( Base ` G ) e. _V ) |
| 32 |
1 31
|
eqeltrid |
|- ( ph -> B e. _V ) |
| 33 |
30 32
|
rabexd |
|- ( ph -> { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } e. _V ) |
| 34 |
|
ovexd |
|- ( ( ph /\ i e. ZZ ) -> ( i .^ A ) e. _V ) |
| 35 |
34
|
fmpttd |
|- ( ph -> ( i e. ZZ |-> ( i .^ A ) ) : ZZ --> _V ) |
| 36 |
35
|
ffnd |
|- ( ph -> ( i e. ZZ |-> ( i .^ A ) ) Fn ZZ ) |
| 37 |
|
fvelrnb |
|- ( ( i e. ZZ |-> ( i .^ A ) ) Fn ZZ -> ( y e. ran ( i e. ZZ |-> ( i .^ A ) ) <-> E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) ) |
| 38 |
36 37
|
syl |
|- ( ph -> ( y e. ran ( i e. ZZ |-> ( i .^ A ) ) <-> E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) ) |
| 39 |
38
|
biimpa |
|- ( ( ph /\ y e. ran ( i e. ZZ |-> ( i .^ A ) ) ) -> E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) |
| 40 |
|
id |
|- ( ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y -> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) |
| 41 |
40
|
eqcomd |
|- ( ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y -> y = ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) ) |
| 42 |
41
|
adantl |
|- ( ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) /\ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) -> y = ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) ) |
| 43 |
|
simpll |
|- ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) -> ph ) |
| 44 |
|
simpr |
|- ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) -> w e. ZZ ) |
| 45 |
43 44
|
jca |
|- ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) -> ( ph /\ w e. ZZ ) ) |
| 46 |
|
eqidd |
|- ( ( ph /\ w e. ZZ ) -> ( i e. ZZ |-> ( i .^ A ) ) = ( i e. ZZ |-> ( i .^ A ) ) ) |
| 47 |
|
simpr |
|- ( ( ( ph /\ w e. ZZ ) /\ i = w ) -> i = w ) |
| 48 |
47
|
oveq1d |
|- ( ( ( ph /\ w e. ZZ ) /\ i = w ) -> ( i .^ A ) = ( w .^ A ) ) |
| 49 |
|
simpr |
|- ( ( ph /\ w e. ZZ ) -> w e. ZZ ) |
| 50 |
|
ovexd |
|- ( ( ph /\ w e. ZZ ) -> ( w .^ A ) e. _V ) |
| 51 |
46 48 49 50
|
fvmptd |
|- ( ( ph /\ w e. ZZ ) -> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = ( w .^ A ) ) |
| 52 |
|
oveq2 |
|- ( x = ( w .^ A ) -> ( ( ( od ` G ) ` A ) .^ x ) = ( ( ( od ` G ) ` A ) .^ ( w .^ A ) ) ) |
| 53 |
52
|
eqeq1d |
|- ( x = ( w .^ A ) -> ( ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) <-> ( ( ( od ` G ) ` A ) .^ ( w .^ A ) ) = ( 0g ` G ) ) ) |
| 54 |
3
|
adantr |
|- ( ( ph /\ w e. ZZ ) -> G e. Grp ) |
| 55 |
6
|
adantr |
|- ( ( ph /\ w e. ZZ ) -> A e. B ) |
| 56 |
1 2 54 49 55
|
mulgcld |
|- ( ( ph /\ w e. ZZ ) -> ( w .^ A ) e. B ) |
| 57 |
15
|
nnzd |
|- ( ph -> ( ( od ` G ) ` A ) e. ZZ ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ w e. ZZ ) -> ( ( od ` G ) ` A ) e. ZZ ) |
| 59 |
49 58 55
|
3jca |
|- ( ( ph /\ w e. ZZ ) -> ( w e. ZZ /\ ( ( od ` G ) ` A ) e. ZZ /\ A e. B ) ) |
| 60 |
1 2
|
mulgass |
|- ( ( G e. Grp /\ ( w e. ZZ /\ ( ( od ` G ) ` A ) e. ZZ /\ A e. B ) ) -> ( ( w x. ( ( od ` G ) ` A ) ) .^ A ) = ( w .^ ( ( ( od ` G ) ` A ) .^ A ) ) ) |
| 61 |
54 59 60
|
syl2anc |
|- ( ( ph /\ w e. ZZ ) -> ( ( w x. ( ( od ` G ) ` A ) ) .^ A ) = ( w .^ ( ( ( od ` G ) ` A ) .^ A ) ) ) |
| 62 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 63 |
1 13 2 62
|
odid |
|- ( A e. B -> ( ( ( od ` G ) ` A ) .^ A ) = ( 0g ` G ) ) |
| 64 |
55 63
|
syl |
|- ( ( ph /\ w e. ZZ ) -> ( ( ( od ` G ) ` A ) .^ A ) = ( 0g ` G ) ) |
| 65 |
64
|
oveq2d |
|- ( ( ph /\ w e. ZZ ) -> ( w .^ ( ( ( od ` G ) ` A ) .^ A ) ) = ( w .^ ( 0g ` G ) ) ) |
| 66 |
1 2 62
|
mulgz |
|- ( ( G e. Grp /\ w e. ZZ ) -> ( w .^ ( 0g ` G ) ) = ( 0g ` G ) ) |
| 67 |
3 66
|
sylan |
|- ( ( ph /\ w e. ZZ ) -> ( w .^ ( 0g ` G ) ) = ( 0g ` G ) ) |
| 68 |
65 67
|
eqtrd |
|- ( ( ph /\ w e. ZZ ) -> ( w .^ ( ( ( od ` G ) ` A ) .^ A ) ) = ( 0g ` G ) ) |
| 69 |
61 68
|
eqtr2d |
|- ( ( ph /\ w e. ZZ ) -> ( 0g ` G ) = ( ( w x. ( ( od ` G ) ` A ) ) .^ A ) ) |
| 70 |
59
|
simp2d |
|- ( ( ph /\ w e. ZZ ) -> ( ( od ` G ) ` A ) e. ZZ ) |
| 71 |
70 49 55
|
3jca |
|- ( ( ph /\ w e. ZZ ) -> ( ( ( od ` G ) ` A ) e. ZZ /\ w e. ZZ /\ A e. B ) ) |
| 72 |
1 2
|
mulgassr |
|- ( ( G e. Grp /\ ( ( ( od ` G ) ` A ) e. ZZ /\ w e. ZZ /\ A e. B ) ) -> ( ( w x. ( ( od ` G ) ` A ) ) .^ A ) = ( ( ( od ` G ) ` A ) .^ ( w .^ A ) ) ) |
| 73 |
54 71 72
|
syl2anc |
|- ( ( ph /\ w e. ZZ ) -> ( ( w x. ( ( od ` G ) ` A ) ) .^ A ) = ( ( ( od ` G ) ` A ) .^ ( w .^ A ) ) ) |
| 74 |
69 73
|
eqtr2d |
|- ( ( ph /\ w e. ZZ ) -> ( ( ( od ` G ) ` A ) .^ ( w .^ A ) ) = ( 0g ` G ) ) |
| 75 |
53 56 74
|
elrabd |
|- ( ( ph /\ w e. ZZ ) -> ( w .^ A ) e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) |
| 76 |
51 75
|
eqeltrd |
|- ( ( ph /\ w e. ZZ ) -> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) |
| 77 |
45 76
|
syl |
|- ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) -> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) |
| 78 |
77
|
adantr |
|- ( ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) /\ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) -> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) |
| 79 |
42 78
|
eqeltrd |
|- ( ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) /\ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) |
| 80 |
|
nfv |
|- F/ w ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y |
| 81 |
|
nfv |
|- F/ z ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y |
| 82 |
|
fveqeq2 |
|- ( z = w -> ( ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y <-> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) ) |
| 83 |
80 81 82
|
cbvrexw |
|- ( E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y <-> E. w e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) |
| 84 |
83
|
biimpi |
|- ( E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y -> E. w e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) |
| 85 |
84
|
adantl |
|- ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) -> E. w e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) |
| 86 |
79 85
|
r19.29a |
|- ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) |
| 87 |
86
|
ex |
|- ( ph -> ( E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) |
| 88 |
87
|
adantr |
|- ( ( ph /\ y e. ran ( i e. ZZ |-> ( i .^ A ) ) ) -> ( E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) |
| 89 |
39 88
|
mpd |
|- ( ( ph /\ y e. ran ( i e. ZZ |-> ( i .^ A ) ) ) -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) |
| 90 |
89
|
ex |
|- ( ph -> ( y e. ran ( i e. ZZ |-> ( i .^ A ) ) -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) |
| 91 |
90
|
ssrdv |
|- ( ph -> ran ( i e. ZZ |-> ( i .^ A ) ) C_ { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) |
| 92 |
|
hashss |
|- ( ( { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } e. _V /\ ran ( i e. ZZ |-> ( i .^ A ) ) C_ { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) -> ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) <_ ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) |
| 93 |
33 91 92
|
syl2anc |
|- ( ph -> ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) <_ ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) |
| 94 |
29 93
|
eqbrtrd |
|- ( ph -> ( ( od ` G ) ` A ) <_ ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) |
| 95 |
16 94
|
jca |
|- ( ph -> ( ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) <_ ( ( od ` G ) ` A ) /\ ( ( od ` G ) ` A ) <_ ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) ) |
| 96 |
|
ssrab2 |
|- { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } C_ B |
| 97 |
96
|
a1i |
|- ( ph -> { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } C_ B ) |
| 98 |
4 97
|
ssfid |
|- ( ph -> { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } e. Fin ) |
| 99 |
|
hashcl |
|- ( { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } e. Fin -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) e. NN0 ) |
| 100 |
98 99
|
syl |
|- ( ph -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) e. NN0 ) |
| 101 |
100
|
nn0red |
|- ( ph -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) e. RR ) |
| 102 |
15
|
nnred |
|- ( ph -> ( ( od ` G ) ` A ) e. RR ) |
| 103 |
101 102
|
letri3d |
|- ( ph -> ( ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) = ( ( od ` G ) ` A ) <-> ( ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) <_ ( ( od ` G ) ` A ) /\ ( ( od ` G ) ` A ) <_ ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) ) ) |
| 104 |
95 103
|
mpbird |
|- ( ph -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) = ( ( od ` G ) ` A ) ) |