| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitscyglem1.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | unitscyglem1.2 |  |-  .^ = ( .g ` G ) | 
						
							| 3 |  | unitscyglem1.3 |  |-  ( ph -> G e. Grp ) | 
						
							| 4 |  | unitscyglem1.4 |  |-  ( ph -> B e. Fin ) | 
						
							| 5 |  | unitscyglem1.5 |  |-  ( ph -> A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n ) | 
						
							| 6 |  | unitscyglem1.6 |  |-  ( ph -> A e. B ) | 
						
							| 7 |  | oveq1 |  |-  ( n = ( ( od ` G ) ` A ) -> ( n .^ x ) = ( ( ( od ` G ) ` A ) .^ x ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( n = ( ( od ` G ) ` A ) -> ( ( n .^ x ) = ( 0g ` G ) <-> ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) ) ) | 
						
							| 9 | 8 | rabbidv |  |-  ( n = ( ( od ` G ) ` A ) -> { x e. B | ( n .^ x ) = ( 0g ` G ) } = { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) | 
						
							| 10 | 9 | fveq2d |  |-  ( n = ( ( od ` G ) ` A ) -> ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) = ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 11 |  | id |  |-  ( n = ( ( od ` G ) ` A ) -> n = ( ( od ` G ) ` A ) ) | 
						
							| 12 | 10 11 | breq12d |  |-  ( n = ( ( od ` G ) ` A ) -> ( ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n <-> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) <_ ( ( od ` G ) ` A ) ) ) | 
						
							| 13 |  | eqid |  |-  ( od ` G ) = ( od ` G ) | 
						
							| 14 | 1 13 | odcl2 |  |-  ( ( G e. Grp /\ B e. Fin /\ A e. B ) -> ( ( od ` G ) ` A ) e. NN ) | 
						
							| 15 | 3 4 6 14 | syl3anc |  |-  ( ph -> ( ( od ` G ) ` A ) e. NN ) | 
						
							| 16 | 12 5 15 | rspcdva |  |-  ( ph -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) <_ ( ( od ` G ) ` A ) ) | 
						
							| 17 |  | eqid |  |-  ( i e. ZZ |-> ( i .^ A ) ) = ( i e. ZZ |-> ( i .^ A ) ) | 
						
							| 18 | 1 13 2 17 | dfod2 |  |-  ( ( G e. Grp /\ A e. B ) -> ( ( od ` G ) ` A ) = if ( ran ( i e. ZZ |-> ( i .^ A ) ) e. Fin , ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) , 0 ) ) | 
						
							| 19 | 3 6 18 | syl2anc |  |-  ( ph -> ( ( od ` G ) ` A ) = if ( ran ( i e. ZZ |-> ( i .^ A ) ) e. Fin , ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) , 0 ) ) | 
						
							| 20 | 3 | adantr |  |-  ( ( ph /\ i e. ZZ ) -> G e. Grp ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ i e. ZZ ) -> i e. ZZ ) | 
						
							| 22 | 6 | adantr |  |-  ( ( ph /\ i e. ZZ ) -> A e. B ) | 
						
							| 23 | 1 2 20 21 22 | mulgcld |  |-  ( ( ph /\ i e. ZZ ) -> ( i .^ A ) e. B ) | 
						
							| 24 | 23 | fmpttd |  |-  ( ph -> ( i e. ZZ |-> ( i .^ A ) ) : ZZ --> B ) | 
						
							| 25 |  | frn |  |-  ( ( i e. ZZ |-> ( i .^ A ) ) : ZZ --> B -> ran ( i e. ZZ |-> ( i .^ A ) ) C_ B ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> ran ( i e. ZZ |-> ( i .^ A ) ) C_ B ) | 
						
							| 27 | 4 26 | ssfid |  |-  ( ph -> ran ( i e. ZZ |-> ( i .^ A ) ) e. Fin ) | 
						
							| 28 | 27 | iftrued |  |-  ( ph -> if ( ran ( i e. ZZ |-> ( i .^ A ) ) e. Fin , ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) , 0 ) = ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) ) | 
						
							| 29 | 19 28 | eqtrd |  |-  ( ph -> ( ( od ` G ) ` A ) = ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) ) | 
						
							| 30 |  | eqid |  |-  { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } = { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } | 
						
							| 31 |  | fvexd |  |-  ( ph -> ( Base ` G ) e. _V ) | 
						
							| 32 | 1 31 | eqeltrid |  |-  ( ph -> B e. _V ) | 
						
							| 33 | 30 32 | rabexd |  |-  ( ph -> { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } e. _V ) | 
						
							| 34 |  | ovexd |  |-  ( ( ph /\ i e. ZZ ) -> ( i .^ A ) e. _V ) | 
						
							| 35 | 34 | fmpttd |  |-  ( ph -> ( i e. ZZ |-> ( i .^ A ) ) : ZZ --> _V ) | 
						
							| 36 | 35 | ffnd |  |-  ( ph -> ( i e. ZZ |-> ( i .^ A ) ) Fn ZZ ) | 
						
							| 37 |  | fvelrnb |  |-  ( ( i e. ZZ |-> ( i .^ A ) ) Fn ZZ -> ( y e. ran ( i e. ZZ |-> ( i .^ A ) ) <-> E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ph -> ( y e. ran ( i e. ZZ |-> ( i .^ A ) ) <-> E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) ) | 
						
							| 39 | 38 | biimpa |  |-  ( ( ph /\ y e. ran ( i e. ZZ |-> ( i .^ A ) ) ) -> E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) | 
						
							| 40 |  | id |  |-  ( ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y -> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) | 
						
							| 41 | 40 | eqcomd |  |-  ( ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y -> y = ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) /\ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) -> y = ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) ) | 
						
							| 43 |  | simpll |  |-  ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) -> ph ) | 
						
							| 44 |  | simpr |  |-  ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) -> w e. ZZ ) | 
						
							| 45 | 43 44 | jca |  |-  ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) -> ( ph /\ w e. ZZ ) ) | 
						
							| 46 |  | eqidd |  |-  ( ( ph /\ w e. ZZ ) -> ( i e. ZZ |-> ( i .^ A ) ) = ( i e. ZZ |-> ( i .^ A ) ) ) | 
						
							| 47 |  | simpr |  |-  ( ( ( ph /\ w e. ZZ ) /\ i = w ) -> i = w ) | 
						
							| 48 | 47 | oveq1d |  |-  ( ( ( ph /\ w e. ZZ ) /\ i = w ) -> ( i .^ A ) = ( w .^ A ) ) | 
						
							| 49 |  | simpr |  |-  ( ( ph /\ w e. ZZ ) -> w e. ZZ ) | 
						
							| 50 |  | ovexd |  |-  ( ( ph /\ w e. ZZ ) -> ( w .^ A ) e. _V ) | 
						
							| 51 | 46 48 49 50 | fvmptd |  |-  ( ( ph /\ w e. ZZ ) -> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = ( w .^ A ) ) | 
						
							| 52 |  | oveq2 |  |-  ( x = ( w .^ A ) -> ( ( ( od ` G ) ` A ) .^ x ) = ( ( ( od ` G ) ` A ) .^ ( w .^ A ) ) ) | 
						
							| 53 | 52 | eqeq1d |  |-  ( x = ( w .^ A ) -> ( ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) <-> ( ( ( od ` G ) ` A ) .^ ( w .^ A ) ) = ( 0g ` G ) ) ) | 
						
							| 54 | 3 | adantr |  |-  ( ( ph /\ w e. ZZ ) -> G e. Grp ) | 
						
							| 55 | 6 | adantr |  |-  ( ( ph /\ w e. ZZ ) -> A e. B ) | 
						
							| 56 | 1 2 54 49 55 | mulgcld |  |-  ( ( ph /\ w e. ZZ ) -> ( w .^ A ) e. B ) | 
						
							| 57 | 15 | nnzd |  |-  ( ph -> ( ( od ` G ) ` A ) e. ZZ ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ w e. ZZ ) -> ( ( od ` G ) ` A ) e. ZZ ) | 
						
							| 59 | 49 58 55 | 3jca |  |-  ( ( ph /\ w e. ZZ ) -> ( w e. ZZ /\ ( ( od ` G ) ` A ) e. ZZ /\ A e. B ) ) | 
						
							| 60 | 1 2 | mulgass |  |-  ( ( G e. Grp /\ ( w e. ZZ /\ ( ( od ` G ) ` A ) e. ZZ /\ A e. B ) ) -> ( ( w x. ( ( od ` G ) ` A ) ) .^ A ) = ( w .^ ( ( ( od ` G ) ` A ) .^ A ) ) ) | 
						
							| 61 | 54 59 60 | syl2anc |  |-  ( ( ph /\ w e. ZZ ) -> ( ( w x. ( ( od ` G ) ` A ) ) .^ A ) = ( w .^ ( ( ( od ` G ) ` A ) .^ A ) ) ) | 
						
							| 62 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 63 | 1 13 2 62 | odid |  |-  ( A e. B -> ( ( ( od ` G ) ` A ) .^ A ) = ( 0g ` G ) ) | 
						
							| 64 | 55 63 | syl |  |-  ( ( ph /\ w e. ZZ ) -> ( ( ( od ` G ) ` A ) .^ A ) = ( 0g ` G ) ) | 
						
							| 65 | 64 | oveq2d |  |-  ( ( ph /\ w e. ZZ ) -> ( w .^ ( ( ( od ` G ) ` A ) .^ A ) ) = ( w .^ ( 0g ` G ) ) ) | 
						
							| 66 | 1 2 62 | mulgz |  |-  ( ( G e. Grp /\ w e. ZZ ) -> ( w .^ ( 0g ` G ) ) = ( 0g ` G ) ) | 
						
							| 67 | 3 66 | sylan |  |-  ( ( ph /\ w e. ZZ ) -> ( w .^ ( 0g ` G ) ) = ( 0g ` G ) ) | 
						
							| 68 | 65 67 | eqtrd |  |-  ( ( ph /\ w e. ZZ ) -> ( w .^ ( ( ( od ` G ) ` A ) .^ A ) ) = ( 0g ` G ) ) | 
						
							| 69 | 61 68 | eqtr2d |  |-  ( ( ph /\ w e. ZZ ) -> ( 0g ` G ) = ( ( w x. ( ( od ` G ) ` A ) ) .^ A ) ) | 
						
							| 70 | 59 | simp2d |  |-  ( ( ph /\ w e. ZZ ) -> ( ( od ` G ) ` A ) e. ZZ ) | 
						
							| 71 | 70 49 55 | 3jca |  |-  ( ( ph /\ w e. ZZ ) -> ( ( ( od ` G ) ` A ) e. ZZ /\ w e. ZZ /\ A e. B ) ) | 
						
							| 72 | 1 2 | mulgassr |  |-  ( ( G e. Grp /\ ( ( ( od ` G ) ` A ) e. ZZ /\ w e. ZZ /\ A e. B ) ) -> ( ( w x. ( ( od ` G ) ` A ) ) .^ A ) = ( ( ( od ` G ) ` A ) .^ ( w .^ A ) ) ) | 
						
							| 73 | 54 71 72 | syl2anc |  |-  ( ( ph /\ w e. ZZ ) -> ( ( w x. ( ( od ` G ) ` A ) ) .^ A ) = ( ( ( od ` G ) ` A ) .^ ( w .^ A ) ) ) | 
						
							| 74 | 69 73 | eqtr2d |  |-  ( ( ph /\ w e. ZZ ) -> ( ( ( od ` G ) ` A ) .^ ( w .^ A ) ) = ( 0g ` G ) ) | 
						
							| 75 | 53 56 74 | elrabd |  |-  ( ( ph /\ w e. ZZ ) -> ( w .^ A ) e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) | 
						
							| 76 | 51 75 | eqeltrd |  |-  ( ( ph /\ w e. ZZ ) -> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) | 
						
							| 77 | 45 76 | syl |  |-  ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) -> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) /\ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) -> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) | 
						
							| 79 | 42 78 | eqeltrd |  |-  ( ( ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) /\ w e. ZZ ) /\ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) | 
						
							| 80 |  | nfv |  |-  F/ w ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y | 
						
							| 81 |  | nfv |  |-  F/ z ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y | 
						
							| 82 |  | fveqeq2 |  |-  ( z = w -> ( ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y <-> ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) ) | 
						
							| 83 | 80 81 82 | cbvrexw |  |-  ( E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y <-> E. w e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) | 
						
							| 84 | 83 | biimpi |  |-  ( E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y -> E. w e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) -> E. w e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` w ) = y ) | 
						
							| 86 | 79 85 | r19.29a |  |-  ( ( ph /\ E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y ) -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) | 
						
							| 87 | 86 | ex |  |-  ( ph -> ( E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 88 | 87 | adantr |  |-  ( ( ph /\ y e. ran ( i e. ZZ |-> ( i .^ A ) ) ) -> ( E. z e. ZZ ( ( i e. ZZ |-> ( i .^ A ) ) ` z ) = y -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 89 | 39 88 | mpd |  |-  ( ( ph /\ y e. ran ( i e. ZZ |-> ( i .^ A ) ) ) -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) | 
						
							| 90 | 89 | ex |  |-  ( ph -> ( y e. ran ( i e. ZZ |-> ( i .^ A ) ) -> y e. { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 91 | 90 | ssrdv |  |-  ( ph -> ran ( i e. ZZ |-> ( i .^ A ) ) C_ { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) | 
						
							| 92 |  | hashss |  |-  ( ( { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } e. _V /\ ran ( i e. ZZ |-> ( i .^ A ) ) C_ { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) -> ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) <_ ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 93 | 33 91 92 | syl2anc |  |-  ( ph -> ( # ` ran ( i e. ZZ |-> ( i .^ A ) ) ) <_ ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 94 | 29 93 | eqbrtrd |  |-  ( ph -> ( ( od ` G ) ` A ) <_ ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 95 | 16 94 | jca |  |-  ( ph -> ( ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) <_ ( ( od ` G ) ` A ) /\ ( ( od ` G ) ` A ) <_ ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) ) | 
						
							| 96 |  | ssrab2 |  |-  { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } C_ B | 
						
							| 97 | 96 | a1i |  |-  ( ph -> { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } C_ B ) | 
						
							| 98 | 4 97 | ssfid |  |-  ( ph -> { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } e. Fin ) | 
						
							| 99 |  | hashcl |  |-  ( { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } e. Fin -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) e. NN0 ) | 
						
							| 100 | 98 99 | syl |  |-  ( ph -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) e. NN0 ) | 
						
							| 101 | 100 | nn0red |  |-  ( ph -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) e. RR ) | 
						
							| 102 | 15 | nnred |  |-  ( ph -> ( ( od ` G ) ` A ) e. RR ) | 
						
							| 103 | 101 102 | letri3d |  |-  ( ph -> ( ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) = ( ( od ` G ) ` A ) <-> ( ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) <_ ( ( od ` G ) ` A ) /\ ( ( od ` G ) ` A ) <_ ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) ) ) | 
						
							| 104 | 95 103 | mpbird |  |-  ( ph -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) = ( ( od ` G ) ` A ) ) |