Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem1.1 |
|- B = ( Base ` G ) |
2 |
|
unitscyglem1.2 |
|- .^ = ( .g ` G ) |
3 |
|
unitscyglem1.3 |
|- ( ph -> G e. Grp ) |
4 |
|
unitscyglem1.4 |
|- ( ph -> B e. Fin ) |
5 |
|
unitscyglem1.5 |
|- ( ph -> A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n ) |
6 |
|
unitscyglem2.1 |
|- ( ph -> D e. NN ) |
7 |
|
unitscyglem2.2 |
|- ( ph -> D || ( # ` B ) ) |
8 |
|
unitscyglem2.3 |
|- ( ph -> A e. B ) |
9 |
|
unitscyglem2.4 |
|- ( ph -> ( ( od ` G ) ` A ) = D ) |
10 |
|
unitscyglem2.5 |
|- ( ph -> A. c e. NN ( c < D -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
11 |
|
breq1 |
|- ( a = k -> ( a || D <-> k || D ) ) |
12 |
11
|
elrab |
|- ( k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } <-> ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) |
13 |
12
|
biimpi |
|- ( k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } -> ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) |
15 |
14
|
simpld |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k e. ( 1 ... ( D - 1 ) ) ) |
16 |
15
|
elfzelzd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k e. ZZ ) |
17 |
6
|
adantr |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D e. NN ) |
18 |
17
|
nnzd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D e. ZZ ) |
19 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
20 |
4 19
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
21 |
20
|
adantr |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( # ` B ) e. NN0 ) |
22 |
21
|
nn0zd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( # ` B ) e. ZZ ) |
23 |
14
|
simprd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k || D ) |
24 |
7
|
adantr |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D || ( # ` B ) ) |
25 |
16 18 22 23 24
|
dvdstrd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k || ( # ` B ) ) |
26 |
|
simpl |
|- ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> ph ) |
27 |
12 15
|
sylan2br |
|- ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> k e. ( 1 ... ( D - 1 ) ) ) |
28 |
26 27
|
jca |
|- ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) ) |
29 |
12 23
|
sylan2br |
|- ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> k || D ) |
30 |
28 29
|
jca |
|- ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) ) |
31 |
|
fveqeq2 |
|- ( x = ( ( D / k ) .^ A ) -> ( ( ( od ` G ) ` x ) = k <-> ( ( od ` G ) ` ( ( D / k ) .^ A ) ) = k ) ) |
32 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> G e. Grp ) |
33 |
|
simpr |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( l x. k ) = D ) |
34 |
33
|
eqcomd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D = ( l x. k ) ) |
35 |
34
|
oveq1d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) = ( ( l x. k ) / k ) ) |
36 |
|
simplr |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> l e. NN ) |
37 |
36
|
nncnd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> l e. CC ) |
38 |
|
elfzelz |
|- ( k e. ( 1 ... ( D - 1 ) ) -> k e. ZZ ) |
39 |
38
|
adantl |
|- ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) -> k e. ZZ ) |
40 |
39
|
ad3antrrr |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> k e. ZZ ) |
41 |
40
|
zcnd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> k e. CC ) |
42 |
|
elfzle1 |
|- ( k e. ( 1 ... ( D - 1 ) ) -> 1 <_ k ) |
43 |
42
|
adantl |
|- ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) -> 1 <_ k ) |
44 |
39 43
|
jca |
|- ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) -> ( k e. ZZ /\ 1 <_ k ) ) |
45 |
|
elnnz1 |
|- ( k e. NN <-> ( k e. ZZ /\ 1 <_ k ) ) |
46 |
44 45
|
sylibr |
|- ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) -> k e. NN ) |
47 |
46
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> k e. NN ) |
48 |
47
|
ad2antrr |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> k e. NN ) |
49 |
48
|
nnne0d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> k =/= 0 ) |
50 |
37 41 49
|
divcan4d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( l x. k ) / k ) = l ) |
51 |
35 50
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) = l ) |
52 |
51 36
|
eqeltrd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) e. NN ) |
53 |
52
|
nnnn0d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) e. NN0 ) |
54 |
53
|
nn0zd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) e. ZZ ) |
55 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> A e. B ) |
56 |
1 2 32 54 55
|
mulgcld |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) .^ A ) e. B ) |
57 |
6
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> D e. NN ) |
58 |
57
|
ad2antrr |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D e. NN ) |
59 |
58
|
nncnd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D e. CC ) |
60 |
59 41 49
|
divcan1d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) x. k ) = D ) |
61 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( od ` G ) ` A ) = D ) |
62 |
61
|
eqcomd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D = ( ( od ` G ) ` A ) ) |
63 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
64 |
1 63 2
|
odmulg |
|- ( ( G e. Grp /\ A e. B /\ ( D / k ) e. ZZ ) -> ( ( od ` G ) ` A ) = ( ( ( D / k ) gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) ) |
65 |
32 55 54 64
|
syl3anc |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( od ` G ) ` A ) = ( ( ( D / k ) gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) ) |
66 |
62 65
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D = ( ( ( D / k ) gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) ) |
67 |
61
|
oveq2d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) gcd ( ( od ` G ) ` A ) ) = ( ( D / k ) gcd D ) ) |
68 |
59 41 49
|
divcan2d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( k x. ( D / k ) ) = D ) |
69 |
68
|
eqcomd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D = ( k x. ( D / k ) ) ) |
70 |
69
|
oveq2d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) gcd D ) = ( ( D / k ) gcd ( k x. ( D / k ) ) ) ) |
71 |
53 40
|
gcdmultipled |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) gcd ( k x. ( D / k ) ) ) = ( D / k ) ) |
72 |
70 71
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) gcd D ) = ( D / k ) ) |
73 |
67 72
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) gcd ( ( od ` G ) ` A ) ) = ( D / k ) ) |
74 |
73
|
oveq1d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( ( D / k ) gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) = ( ( D / k ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) ) |
75 |
66 74
|
eqtrd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D = ( ( D / k ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) ) |
76 |
60 75
|
eqtr2d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) = ( ( D / k ) x. k ) ) |
77 |
1 63 56
|
odcld |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( od ` G ) ` ( ( D / k ) .^ A ) ) e. NN0 ) |
78 |
77
|
nn0cnd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( od ` G ) ` ( ( D / k ) .^ A ) ) e. CC ) |
79 |
54
|
zcnd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) e. CC ) |
80 |
58
|
nnne0d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D =/= 0 ) |
81 |
59 41 80 49
|
divne0d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) =/= 0 ) |
82 |
78 41 79 81
|
mulcand |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( ( D / k ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) = ( ( D / k ) x. k ) <-> ( ( od ` G ) ` ( ( D / k ) .^ A ) ) = k ) ) |
83 |
76 82
|
mpbid |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( od ` G ) ` ( ( D / k ) .^ A ) ) = k ) |
84 |
31 56 83
|
elrabd |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) .^ A ) e. { x e. B | ( ( od ` G ) ` x ) = k } ) |
85 |
84
|
ne0d |
|- ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) |
86 |
|
nndivides |
|- ( ( k e. NN /\ D e. NN ) -> ( k || D <-> E. l e. NN ( l x. k ) = D ) ) |
87 |
47 57 86
|
syl2anc |
|- ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> ( k || D <-> E. l e. NN ( l x. k ) = D ) ) |
88 |
87
|
biimpd |
|- ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> ( k || D -> E. l e. NN ( l x. k ) = D ) ) |
89 |
88
|
syldbl2 |
|- ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> E. l e. NN ( l x. k ) = D ) |
90 |
85 89
|
r19.29a |
|- ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) |
91 |
30 90
|
syl |
|- ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) |
92 |
91
|
ex |
|- ( ph -> ( ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) |
93 |
92
|
adantr |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) |
94 |
14 93
|
mpd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) |
95 |
25 94
|
jca |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) |
96 |
15 42
|
syl |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> 1 <_ k ) |
97 |
16 96
|
jca |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( k e. ZZ /\ 1 <_ k ) ) |
98 |
97 45
|
sylibr |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k e. NN ) |
99 |
98
|
nnred |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k e. RR ) |
100 |
17
|
nnred |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D e. RR ) |
101 |
|
1red |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> 1 e. RR ) |
102 |
100 101
|
resubcld |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( D - 1 ) e. RR ) |
103 |
|
elfzle2 |
|- ( k e. ( 1 ... ( D - 1 ) ) -> k <_ ( D - 1 ) ) |
104 |
15 103
|
syl |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k <_ ( D - 1 ) ) |
105 |
100
|
ltm1d |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( D - 1 ) < D ) |
106 |
99 102 100 104 105
|
lelttrd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k < D ) |
107 |
|
breq1 |
|- ( c = k -> ( c < D <-> k < D ) ) |
108 |
|
breq1 |
|- ( c = k -> ( c || ( # ` B ) <-> k || ( # ` B ) ) ) |
109 |
|
eqeq2 |
|- ( c = k -> ( ( ( od ` G ) ` x ) = c <-> ( ( od ` G ) ` x ) = k ) ) |
110 |
109
|
rabbidv |
|- ( c = k -> { x e. B | ( ( od ` G ) ` x ) = c } = { x e. B | ( ( od ` G ) ` x ) = k } ) |
111 |
110
|
neeq1d |
|- ( c = k -> ( { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) |
112 |
108 111
|
anbi12d |
|- ( c = k -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) <-> ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) ) |
113 |
110
|
fveq2d |
|- ( c = k -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) |
114 |
|
fveq2 |
|- ( c = k -> ( phi ` c ) = ( phi ` k ) ) |
115 |
113 114
|
eqeq12d |
|- ( c = k -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) |
116 |
112 115
|
imbi12d |
|- ( c = k -> ( ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) <-> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) ) |
117 |
107 116
|
imbi12d |
|- ( c = k -> ( ( c < D -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) <-> ( k < D -> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) ) ) |
118 |
10
|
adantr |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> A. c e. NN ( c < D -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
119 |
117 118 98
|
rspcdva |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( k < D -> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) ) |
120 |
106 119
|
mpd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) |
121 |
95 120
|
mpd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) |
122 |
121
|
sumeq2dv |
|- ( ph -> sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) ) |
123 |
122
|
eqcomd |
|- ( ph -> sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) = sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) |
124 |
123
|
oveq1d |
|- ( ph -> ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) ) |
125 |
|
elun |
|- ( y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) <-> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) |
126 |
125
|
biimpi |
|- ( y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) |
127 |
126
|
adantl |
|- ( ( ph /\ y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) |
128 |
|
1zzd |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> 1 e. ZZ ) |
129 |
6
|
adantr |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> D e. NN ) |
130 |
129
|
nnzd |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> D e. ZZ ) |
131 |
|
elfzelz |
|- ( a e. ( 1 ... ( D - 1 ) ) -> a e. ZZ ) |
132 |
131
|
adantr |
|- ( ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) -> a e. ZZ ) |
133 |
132
|
adantl |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a e. ZZ ) |
134 |
|
elfzle1 |
|- ( a e. ( 1 ... ( D - 1 ) ) -> 1 <_ a ) |
135 |
134
|
adantr |
|- ( ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) -> 1 <_ a ) |
136 |
135
|
adantl |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> 1 <_ a ) |
137 |
133
|
zred |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a e. RR ) |
138 |
129
|
nnred |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> D e. RR ) |
139 |
|
1red |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> 1 e. RR ) |
140 |
138 139
|
resubcld |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> ( D - 1 ) e. RR ) |
141 |
|
elfzle2 |
|- ( a e. ( 1 ... ( D - 1 ) ) -> a <_ ( D - 1 ) ) |
142 |
141
|
adantr |
|- ( ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) -> a <_ ( D - 1 ) ) |
143 |
142
|
adantl |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a <_ ( D - 1 ) ) |
144 |
138
|
ltm1d |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> ( D - 1 ) < D ) |
145 |
137 140 138 143 144
|
lelttrd |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a < D ) |
146 |
137 138 145
|
ltled |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a <_ D ) |
147 |
128 130 133 136 146
|
elfzd |
|- ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a e. ( 1 ... D ) ) |
148 |
147
|
rabss3d |
|- ( ph -> { a e. ( 1 ... ( D - 1 ) ) | a || D } C_ { a e. ( 1 ... D ) | a || D } ) |
149 |
148
|
sseld |
|- ( ph -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } -> y e. { a e. ( 1 ... D ) | a || D } ) ) |
150 |
149
|
imp |
|- ( ( ph /\ y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) |
151 |
|
elsni |
|- ( y e. { D } -> y = D ) |
152 |
151
|
adantl |
|- ( ( ph /\ y e. { D } ) -> y = D ) |
153 |
|
simpr |
|- ( ( ph /\ y = D ) -> y = D ) |
154 |
|
breq1 |
|- ( a = D -> ( a || D <-> D || D ) ) |
155 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
156 |
6
|
nnzd |
|- ( ph -> D e. ZZ ) |
157 |
6
|
nnge1d |
|- ( ph -> 1 <_ D ) |
158 |
6
|
nnred |
|- ( ph -> D e. RR ) |
159 |
158
|
leidd |
|- ( ph -> D <_ D ) |
160 |
155 156 156 157 159
|
elfzd |
|- ( ph -> D e. ( 1 ... D ) ) |
161 |
|
iddvds |
|- ( D e. ZZ -> D || D ) |
162 |
156 161
|
syl |
|- ( ph -> D || D ) |
163 |
154 160 162
|
elrabd |
|- ( ph -> D e. { a e. ( 1 ... D ) | a || D } ) |
164 |
163
|
adantr |
|- ( ( ph /\ y = D ) -> D e. { a e. ( 1 ... D ) | a || D } ) |
165 |
153 164
|
eqeltrd |
|- ( ( ph /\ y = D ) -> y e. { a e. ( 1 ... D ) | a || D } ) |
166 |
165
|
ex |
|- ( ph -> ( y = D -> y e. { a e. ( 1 ... D ) | a || D } ) ) |
167 |
166
|
adantr |
|- ( ( ph /\ y e. { D } ) -> ( y = D -> y e. { a e. ( 1 ... D ) | a || D } ) ) |
168 |
152 167
|
mpd |
|- ( ( ph /\ y e. { D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) |
169 |
150 168
|
jaodan |
|- ( ( ph /\ ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) -> y e. { a e. ( 1 ... D ) | a || D } ) |
170 |
169
|
ex |
|- ( ph -> ( ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) ) |
171 |
170
|
adantr |
|- ( ( ph /\ y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) -> ( ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) ) |
172 |
127 171
|
mpd |
|- ( ( ph /\ y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) -> y e. { a e. ( 1 ... D ) | a || D } ) |
173 |
172
|
ex |
|- ( ph -> ( y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) ) |
174 |
|
simpr |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> y = D ) |
175 |
|
eqidd |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> D = D ) |
176 |
6
|
ad2antrr |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> D e. NN ) |
177 |
|
elsng |
|- ( D e. NN -> ( D e. { D } <-> D = D ) ) |
178 |
176 177
|
syl |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> ( D e. { D } <-> D = D ) ) |
179 |
175 178
|
mpbird |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> D e. { D } ) |
180 |
174 179
|
eqeltrd |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> y e. { D } ) |
181 |
180
|
olcd |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) |
182 |
|
breq1 |
|- ( a = y -> ( a || D <-> y || D ) ) |
183 |
182
|
elrab |
|- ( y e. { a e. ( 1 ... D ) | a || D } <-> ( y e. ( 1 ... D ) /\ y || D ) ) |
184 |
183
|
biimpi |
|- ( y e. { a e. ( 1 ... D ) | a || D } -> ( y e. ( 1 ... D ) /\ y || D ) ) |
185 |
184
|
adantl |
|- ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) -> ( y e. ( 1 ... D ) /\ y || D ) ) |
186 |
185
|
adantr |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> ( y e. ( 1 ... D ) /\ y || D ) ) |
187 |
|
1zzd |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> 1 e. ZZ ) |
188 |
156
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> D e. ZZ ) |
189 |
188 187
|
zsubcld |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> ( D - 1 ) e. ZZ ) |
190 |
|
elfzelz |
|- ( y e. ( 1 ... D ) -> y e. ZZ ) |
191 |
190
|
adantr |
|- ( ( y e. ( 1 ... D ) /\ y || D ) -> y e. ZZ ) |
192 |
191
|
adantl |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y e. ZZ ) |
193 |
|
elfzle1 |
|- ( y e. ( 1 ... D ) -> 1 <_ y ) |
194 |
193
|
adantr |
|- ( ( y e. ( 1 ... D ) /\ y || D ) -> 1 <_ y ) |
195 |
194
|
adantl |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> 1 <_ y ) |
196 |
|
elfzle2 |
|- ( y e. ( 1 ... D ) -> y <_ D ) |
197 |
196
|
adantr |
|- ( ( y e. ( 1 ... D ) /\ y || D ) -> y <_ D ) |
198 |
197
|
adantl |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y <_ D ) |
199 |
|
neqne |
|- ( -. y = D -> y =/= D ) |
200 |
199
|
adantl |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> y =/= D ) |
201 |
200
|
necomd |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> D =/= y ) |
202 |
201
|
adantr |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> D =/= y ) |
203 |
198 202
|
jca |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> ( y <_ D /\ D =/= y ) ) |
204 |
192
|
zred |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y e. RR ) |
205 |
158
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> D e. RR ) |
206 |
204 205
|
ltlend |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> ( y < D <-> ( y <_ D /\ D =/= y ) ) ) |
207 |
203 206
|
mpbird |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y < D ) |
208 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> D e. NN ) |
209 |
208
|
nnzd |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> D e. ZZ ) |
210 |
192 209
|
zltlem1d |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> ( y < D <-> y <_ ( D - 1 ) ) ) |
211 |
207 210
|
mpbid |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y <_ ( D - 1 ) ) |
212 |
187 189 192 195 211
|
elfzd |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y e. ( 1 ... ( D - 1 ) ) ) |
213 |
|
simprr |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y || D ) |
214 |
182 212 213
|
elrabd |
|- ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) |
215 |
214
|
ex |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> ( ( y e. ( 1 ... D ) /\ y || D ) -> y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) ) |
216 |
186 215
|
mpd |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) |
217 |
216
|
orcd |
|- ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) |
218 |
181 217
|
pm2.61dan |
|- ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) |
219 |
218 125
|
sylibr |
|- ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) -> y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) |
220 |
219
|
ex |
|- ( ph -> ( y e. { a e. ( 1 ... D ) | a || D } -> y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) ) |
221 |
173 220
|
impbid |
|- ( ph -> ( y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) <-> y e. { a e. ( 1 ... D ) | a || D } ) ) |
222 |
221
|
eqrdv |
|- ( ph -> ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) = { a e. ( 1 ... D ) | a || D } ) |
223 |
222
|
sumeq1d |
|- ( ph -> sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( phi ` k ) = sum_ k e. { a e. ( 1 ... D ) | a || D } ( phi ` k ) ) |
224 |
|
phisum |
|- ( D e. NN -> sum_ k e. { a e. NN | a || D } ( phi ` k ) = D ) |
225 |
6 224
|
syl |
|- ( ph -> sum_ k e. { a e. NN | a || D } ( phi ` k ) = D ) |
226 |
|
eqcom |
|- ( ( ( od ` G ) ` A ) = D <-> D = ( ( od ` G ) ` A ) ) |
227 |
226
|
imbi2i |
|- ( ( ph -> ( ( od ` G ) ` A ) = D ) <-> ( ph -> D = ( ( od ` G ) ` A ) ) ) |
228 |
9 227
|
mpbi |
|- ( ph -> D = ( ( od ` G ) ` A ) ) |
229 |
228
|
oveq1d |
|- ( ph -> ( D .^ x ) = ( ( ( od ` G ) ` A ) .^ x ) ) |
230 |
229
|
eqeq1d |
|- ( ph -> ( ( D .^ x ) = ( 0g ` G ) <-> ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) ) ) |
231 |
230
|
rabbidv |
|- ( ph -> { x e. B | ( D .^ x ) = ( 0g ` G ) } = { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) |
232 |
231
|
fveq2d |
|- ( ph -> ( # ` { x e. B | ( D .^ x ) = ( 0g ` G ) } ) = ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) |
233 |
1 2 3 4 5 8
|
unitscyglem1 |
|- ( ph -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) = ( ( od ` G ) ` A ) ) |
234 |
232 233
|
eqtrd |
|- ( ph -> ( # ` { x e. B | ( D .^ x ) = ( 0g ` G ) } ) = ( ( od ` G ) ` A ) ) |
235 |
234 9
|
eqtr2d |
|- ( ph -> D = ( # ` { x e. B | ( D .^ x ) = ( 0g ` G ) } ) ) |
236 |
1 2 3 4 6
|
grpods |
|- ( ph -> sum_ k e. { a e. ( 1 ... D ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( # ` { x e. B | ( D .^ x ) = ( 0g ` G ) } ) ) |
237 |
235 236
|
eqtr4d |
|- ( ph -> D = sum_ k e. { a e. ( 1 ... D ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) |
238 |
222
|
eqcomd |
|- ( ph -> { a e. ( 1 ... D ) | a || D } = ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) |
239 |
238
|
sumeq1d |
|- ( ph -> sum_ k e. { a e. ( 1 ... D ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) |
240 |
237 239
|
eqtrd |
|- ( ph -> D = sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) |
241 |
225 240
|
eqtr2d |
|- ( ph -> sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = sum_ k e. { a e. NN | a || D } ( phi ` k ) ) |
242 |
|
1zzd |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> 1 e. ZZ ) |
243 |
156
|
adantr |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> D e. ZZ ) |
244 |
182
|
elrab |
|- ( y e. { a e. NN | a || D } <-> ( y e. NN /\ y || D ) ) |
245 |
244
|
biimpi |
|- ( y e. { a e. NN | a || D } -> ( y e. NN /\ y || D ) ) |
246 |
245
|
adantl |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> ( y e. NN /\ y || D ) ) |
247 |
246
|
simpld |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> y e. NN ) |
248 |
247
|
nnzd |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> y e. ZZ ) |
249 |
247
|
nnge1d |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> 1 <_ y ) |
250 |
246
|
simprd |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> y || D ) |
251 |
6
|
adantr |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> D e. NN ) |
252 |
|
dvdsle |
|- ( ( y e. ZZ /\ D e. NN ) -> ( y || D -> y <_ D ) ) |
253 |
248 251 252
|
syl2anc |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> ( y || D -> y <_ D ) ) |
254 |
250 253
|
mpd |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> y <_ D ) |
255 |
242 243 248 249 254
|
elfzd |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> y e. ( 1 ... D ) ) |
256 |
182 255 250
|
elrabd |
|- ( ( ph /\ y e. { a e. NN | a || D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) |
257 |
256
|
ex |
|- ( ph -> ( y e. { a e. NN | a || D } -> y e. { a e. ( 1 ... D ) | a || D } ) ) |
258 |
|
elfzelz |
|- ( a e. ( 1 ... D ) -> a e. ZZ ) |
259 |
|
elfzle1 |
|- ( a e. ( 1 ... D ) -> 1 <_ a ) |
260 |
258 259
|
jca |
|- ( a e. ( 1 ... D ) -> ( a e. ZZ /\ 1 <_ a ) ) |
261 |
260
|
adantr |
|- ( ( a e. ( 1 ... D ) /\ a || D ) -> ( a e. ZZ /\ 1 <_ a ) ) |
262 |
261
|
adantl |
|- ( ( ph /\ ( a e. ( 1 ... D ) /\ a || D ) ) -> ( a e. ZZ /\ 1 <_ a ) ) |
263 |
|
elnnz1 |
|- ( a e. NN <-> ( a e. ZZ /\ 1 <_ a ) ) |
264 |
262 263
|
sylibr |
|- ( ( ph /\ ( a e. ( 1 ... D ) /\ a || D ) ) -> a e. NN ) |
265 |
264
|
rabss3d |
|- ( ph -> { a e. ( 1 ... D ) | a || D } C_ { a e. NN | a || D } ) |
266 |
265
|
sseld |
|- ( ph -> ( y e. { a e. ( 1 ... D ) | a || D } -> y e. { a e. NN | a || D } ) ) |
267 |
257 266
|
impbid |
|- ( ph -> ( y e. { a e. NN | a || D } <-> y e. { a e. ( 1 ... D ) | a || D } ) ) |
268 |
267
|
eqrdv |
|- ( ph -> { a e. NN | a || D } = { a e. ( 1 ... D ) | a || D } ) |
269 |
268
|
sumeq1d |
|- ( ph -> sum_ k e. { a e. NN | a || D } ( phi ` k ) = sum_ k e. { a e. ( 1 ... D ) | a || D } ( phi ` k ) ) |
270 |
241 269
|
eqtr2d |
|- ( ph -> sum_ k e. { a e. ( 1 ... D ) | a || D } ( phi ` k ) = sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) |
271 |
223 270
|
eqtrd |
|- ( ph -> sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( phi ` k ) = sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) |
272 |
|
nfv |
|- F/ k ph |
273 |
|
nfcv |
|- F/_ k ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) |
274 |
|
fzfid |
|- ( ph -> ( 1 ... ( D - 1 ) ) e. Fin ) |
275 |
|
ssrab2 |
|- { a e. ( 1 ... ( D - 1 ) ) | a || D } C_ ( 1 ... ( D - 1 ) ) |
276 |
275
|
a1i |
|- ( ph -> { a e. ( 1 ... ( D - 1 ) ) | a || D } C_ ( 1 ... ( D - 1 ) ) ) |
277 |
274 276
|
ssfid |
|- ( ph -> { a e. ( 1 ... ( D - 1 ) ) | a || D } e. Fin ) |
278 |
154
|
elrab |
|- ( D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } <-> ( D e. ( 1 ... ( D - 1 ) ) /\ D || D ) ) |
279 |
278
|
biimpi |
|- ( D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } -> ( D e. ( 1 ... ( D - 1 ) ) /\ D || D ) ) |
280 |
279
|
simpld |
|- ( D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } -> D e. ( 1 ... ( D - 1 ) ) ) |
281 |
280
|
adantl |
|- ( ( ph /\ D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D e. ( 1 ... ( D - 1 ) ) ) |
282 |
|
elfzle2 |
|- ( D e. ( 1 ... ( D - 1 ) ) -> D <_ ( D - 1 ) ) |
283 |
281 282
|
syl |
|- ( ( ph /\ D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D <_ ( D - 1 ) ) |
284 |
158
|
ltm1d |
|- ( ph -> ( D - 1 ) < D ) |
285 |
|
1red |
|- ( ph -> 1 e. RR ) |
286 |
158 285
|
resubcld |
|- ( ph -> ( D - 1 ) e. RR ) |
287 |
286 158
|
ltnled |
|- ( ph -> ( ( D - 1 ) < D <-> -. D <_ ( D - 1 ) ) ) |
288 |
284 287
|
mpbid |
|- ( ph -> -. D <_ ( D - 1 ) ) |
289 |
288
|
adantr |
|- ( ( ph /\ D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> -. D <_ ( D - 1 ) ) |
290 |
283 289
|
pm2.21dd |
|- ( ( ph /\ D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> -. D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) |
291 |
|
simpr |
|- ( ( ph /\ -. D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> -. D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) |
292 |
290 291
|
pm2.61dan |
|- ( ph -> -. D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) |
293 |
4
|
adantr |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> B e. Fin ) |
294 |
|
ssrab2 |
|- { x e. B | ( ( od ` G ) ` x ) = k } C_ B |
295 |
294
|
a1i |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> { x e. B | ( ( od ` G ) ` x ) = k } C_ B ) |
296 |
293 295
|
ssfid |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> { x e. B | ( ( od ` G ) ` x ) = k } e. Fin ) |
297 |
|
hashcl |
|- ( { x e. B | ( ( od ` G ) ` x ) = k } e. Fin -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. NN0 ) |
298 |
296 297
|
syl |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. NN0 ) |
299 |
298
|
nn0cnd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. CC ) |
300 |
|
eqeq2 |
|- ( k = D -> ( ( ( od ` G ) ` x ) = k <-> ( ( od ` G ) ` x ) = D ) ) |
301 |
300
|
rabbidv |
|- ( k = D -> { x e. B | ( ( od ` G ) ` x ) = k } = { x e. B | ( ( od ` G ) ` x ) = D } ) |
302 |
301
|
fveq2d |
|- ( k = D -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) |
303 |
|
ssrab2 |
|- { x e. B | ( ( od ` G ) ` x ) = D } C_ B |
304 |
303
|
a1i |
|- ( ph -> { x e. B | ( ( od ` G ) ` x ) = D } C_ B ) |
305 |
4 304
|
ssfid |
|- ( ph -> { x e. B | ( ( od ` G ) ` x ) = D } e. Fin ) |
306 |
|
hashcl |
|- ( { x e. B | ( ( od ` G ) ` x ) = D } e. Fin -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) e. NN0 ) |
307 |
305 306
|
syl |
|- ( ph -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) e. NN0 ) |
308 |
307
|
nn0cnd |
|- ( ph -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) e. CC ) |
309 |
272 273 277 6 292 299 302 308
|
fsumsplitsn |
|- ( ph -> sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) ) |
310 |
271 309
|
eqtr2d |
|- ( ph -> ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) = sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( phi ` k ) ) |
311 |
|
nfcv |
|- F/_ k ( phi ` D ) |
312 |
121 299
|
eqeltrrd |
|- ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( phi ` k ) e. CC ) |
313 |
|
fveq2 |
|- ( k = D -> ( phi ` k ) = ( phi ` D ) ) |
314 |
6
|
phicld |
|- ( ph -> ( phi ` D ) e. NN ) |
315 |
314
|
nncnd |
|- ( ph -> ( phi ` D ) e. CC ) |
316 |
272 311 277 6 292 312 313 315
|
fsumsplitsn |
|- ( ph -> sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( phi ` k ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( phi ` D ) ) ) |
317 |
310 316
|
eqtrd |
|- ( ph -> ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( phi ` D ) ) ) |
318 |
124 317
|
eqtrd |
|- ( ph -> ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( phi ` D ) ) ) |
319 |
277 312
|
fsumcl |
|- ( ph -> sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) e. CC ) |
320 |
319 308 315
|
addcand |
|- ( ph -> ( ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( phi ` D ) ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) = ( phi ` D ) ) ) |
321 |
318 320
|
mpbid |
|- ( ph -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) = ( phi ` D ) ) |