| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitscyglem1.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | unitscyglem1.2 |  |-  .^ = ( .g ` G ) | 
						
							| 3 |  | unitscyglem1.3 |  |-  ( ph -> G e. Grp ) | 
						
							| 4 |  | unitscyglem1.4 |  |-  ( ph -> B e. Fin ) | 
						
							| 5 |  | unitscyglem1.5 |  |-  ( ph -> A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n ) | 
						
							| 6 |  | unitscyglem2.1 |  |-  ( ph -> D e. NN ) | 
						
							| 7 |  | unitscyglem2.2 |  |-  ( ph -> D || ( # ` B ) ) | 
						
							| 8 |  | unitscyglem2.3 |  |-  ( ph -> A e. B ) | 
						
							| 9 |  | unitscyglem2.4 |  |-  ( ph -> ( ( od ` G ) ` A ) = D ) | 
						
							| 10 |  | unitscyglem2.5 |  |-  ( ph -> A. c e. NN ( c < D -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 11 |  | breq1 |  |-  ( a = k -> ( a || D <-> k || D ) ) | 
						
							| 12 | 11 | elrab |  |-  ( k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } <-> ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) | 
						
							| 13 | 12 | biimpi |  |-  ( k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } -> ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) | 
						
							| 15 | 14 | simpld |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k e. ( 1 ... ( D - 1 ) ) ) | 
						
							| 16 | 15 | elfzelzd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k e. ZZ ) | 
						
							| 17 | 6 | adantr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D e. NN ) | 
						
							| 18 | 17 | nnzd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D e. ZZ ) | 
						
							| 19 |  | hashcl |  |-  ( B e. Fin -> ( # ` B ) e. NN0 ) | 
						
							| 20 | 4 19 | syl |  |-  ( ph -> ( # ` B ) e. NN0 ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( # ` B ) e. NN0 ) | 
						
							| 22 | 21 | nn0zd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( # ` B ) e. ZZ ) | 
						
							| 23 | 14 | simprd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k || D ) | 
						
							| 24 | 7 | adantr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D || ( # ` B ) ) | 
						
							| 25 | 16 18 22 23 24 | dvdstrd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k || ( # ` B ) ) | 
						
							| 26 |  | simpl |  |-  ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> ph ) | 
						
							| 27 | 12 15 | sylan2br |  |-  ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> k e. ( 1 ... ( D - 1 ) ) ) | 
						
							| 28 | 26 27 | jca |  |-  ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) ) | 
						
							| 29 | 12 23 | sylan2br |  |-  ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> k || D ) | 
						
							| 30 | 28 29 | jca |  |-  ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) ) | 
						
							| 31 |  | fveqeq2 |  |-  ( x = ( ( D / k ) .^ A ) -> ( ( ( od ` G ) ` x ) = k <-> ( ( od ` G ) ` ( ( D / k ) .^ A ) ) = k ) ) | 
						
							| 32 | 3 | ad4antr |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> G e. Grp ) | 
						
							| 33 |  | simpr |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( l x. k ) = D ) | 
						
							| 34 | 33 | eqcomd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D = ( l x. k ) ) | 
						
							| 35 | 34 | oveq1d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) = ( ( l x. k ) / k ) ) | 
						
							| 36 |  | simplr |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> l e. NN ) | 
						
							| 37 | 36 | nncnd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> l e. CC ) | 
						
							| 38 |  | elfzelz |  |-  ( k e. ( 1 ... ( D - 1 ) ) -> k e. ZZ ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) -> k e. ZZ ) | 
						
							| 40 | 39 | ad3antrrr |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> k e. ZZ ) | 
						
							| 41 | 40 | zcnd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> k e. CC ) | 
						
							| 42 |  | elfzle1 |  |-  ( k e. ( 1 ... ( D - 1 ) ) -> 1 <_ k ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) -> 1 <_ k ) | 
						
							| 44 | 39 43 | jca |  |-  ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 45 |  | elnnz1 |  |-  ( k e. NN <-> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 46 | 44 45 | sylibr |  |-  ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) -> k e. NN ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> k e. NN ) | 
						
							| 48 | 47 | ad2antrr |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> k e. NN ) | 
						
							| 49 | 48 | nnne0d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> k =/= 0 ) | 
						
							| 50 | 37 41 49 | divcan4d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( l x. k ) / k ) = l ) | 
						
							| 51 | 35 50 | eqtrd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) = l ) | 
						
							| 52 | 51 36 | eqeltrd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) e. NN ) | 
						
							| 53 | 52 | nnnn0d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) e. NN0 ) | 
						
							| 54 | 53 | nn0zd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) e. ZZ ) | 
						
							| 55 | 8 | ad4antr |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> A e. B ) | 
						
							| 56 | 1 2 32 54 55 | mulgcld |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) .^ A ) e. B ) | 
						
							| 57 | 6 | ad2antrr |  |-  ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> D e. NN ) | 
						
							| 58 | 57 | ad2antrr |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D e. NN ) | 
						
							| 59 | 58 | nncnd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D e. CC ) | 
						
							| 60 | 59 41 49 | divcan1d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) x. k ) = D ) | 
						
							| 61 | 9 | ad4antr |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( od ` G ) ` A ) = D ) | 
						
							| 62 | 61 | eqcomd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D = ( ( od ` G ) ` A ) ) | 
						
							| 63 |  | eqid |  |-  ( od ` G ) = ( od ` G ) | 
						
							| 64 | 1 63 2 | odmulg |  |-  ( ( G e. Grp /\ A e. B /\ ( D / k ) e. ZZ ) -> ( ( od ` G ) ` A ) = ( ( ( D / k ) gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) ) | 
						
							| 65 | 32 55 54 64 | syl3anc |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( od ` G ) ` A ) = ( ( ( D / k ) gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) ) | 
						
							| 66 | 62 65 | eqtrd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D = ( ( ( D / k ) gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) ) | 
						
							| 67 | 61 | oveq2d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) gcd ( ( od ` G ) ` A ) ) = ( ( D / k ) gcd D ) ) | 
						
							| 68 | 59 41 49 | divcan2d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( k x. ( D / k ) ) = D ) | 
						
							| 69 | 68 | eqcomd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D = ( k x. ( D / k ) ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) gcd D ) = ( ( D / k ) gcd ( k x. ( D / k ) ) ) ) | 
						
							| 71 | 53 40 | gcdmultipled |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) gcd ( k x. ( D / k ) ) ) = ( D / k ) ) | 
						
							| 72 | 70 71 | eqtrd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) gcd D ) = ( D / k ) ) | 
						
							| 73 | 67 72 | eqtrd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) gcd ( ( od ` G ) ` A ) ) = ( D / k ) ) | 
						
							| 74 | 73 | oveq1d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( ( D / k ) gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) = ( ( D / k ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) ) | 
						
							| 75 | 66 74 | eqtrd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D = ( ( D / k ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) ) | 
						
							| 76 | 60 75 | eqtr2d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) = ( ( D / k ) x. k ) ) | 
						
							| 77 | 1 63 56 | odcld |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( od ` G ) ` ( ( D / k ) .^ A ) ) e. NN0 ) | 
						
							| 78 | 77 | nn0cnd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( od ` G ) ` ( ( D / k ) .^ A ) ) e. CC ) | 
						
							| 79 | 54 | zcnd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) e. CC ) | 
						
							| 80 | 58 | nnne0d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> D =/= 0 ) | 
						
							| 81 | 59 41 80 49 | divne0d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( D / k ) =/= 0 ) | 
						
							| 82 | 78 41 79 81 | mulcand |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( ( D / k ) x. ( ( od ` G ) ` ( ( D / k ) .^ A ) ) ) = ( ( D / k ) x. k ) <-> ( ( od ` G ) ` ( ( D / k ) .^ A ) ) = k ) ) | 
						
							| 83 | 76 82 | mpbid |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( od ` G ) ` ( ( D / k ) .^ A ) ) = k ) | 
						
							| 84 | 31 56 83 | elrabd |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> ( ( D / k ) .^ A ) e. { x e. B | ( ( od ` G ) ` x ) = k } ) | 
						
							| 85 | 84 | ne0d |  |-  ( ( ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) /\ l e. NN ) /\ ( l x. k ) = D ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) | 
						
							| 86 |  | nndivides |  |-  ( ( k e. NN /\ D e. NN ) -> ( k || D <-> E. l e. NN ( l x. k ) = D ) ) | 
						
							| 87 | 47 57 86 | syl2anc |  |-  ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> ( k || D <-> E. l e. NN ( l x. k ) = D ) ) | 
						
							| 88 | 87 | biimpd |  |-  ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> ( k || D -> E. l e. NN ( l x. k ) = D ) ) | 
						
							| 89 | 88 | syldbl2 |  |-  ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> E. l e. NN ( l x. k ) = D ) | 
						
							| 90 | 85 89 | r19.29a |  |-  ( ( ( ph /\ k e. ( 1 ... ( D - 1 ) ) ) /\ k || D ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) | 
						
							| 91 | 30 90 | syl |  |-  ( ( ph /\ ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) | 
						
							| 92 | 91 | ex |  |-  ( ph -> ( ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( ( k e. ( 1 ... ( D - 1 ) ) /\ k || D ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) | 
						
							| 94 | 14 93 | mpd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) | 
						
							| 95 | 25 94 | jca |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) | 
						
							| 96 | 15 42 | syl |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> 1 <_ k ) | 
						
							| 97 | 16 96 | jca |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 98 | 97 45 | sylibr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k e. NN ) | 
						
							| 99 | 98 | nnred |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k e. RR ) | 
						
							| 100 | 17 | nnred |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D e. RR ) | 
						
							| 101 |  | 1red |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> 1 e. RR ) | 
						
							| 102 | 100 101 | resubcld |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( D - 1 ) e. RR ) | 
						
							| 103 |  | elfzle2 |  |-  ( k e. ( 1 ... ( D - 1 ) ) -> k <_ ( D - 1 ) ) | 
						
							| 104 | 15 103 | syl |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k <_ ( D - 1 ) ) | 
						
							| 105 | 100 | ltm1d |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( D - 1 ) < D ) | 
						
							| 106 | 99 102 100 104 105 | lelttrd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> k < D ) | 
						
							| 107 |  | breq1 |  |-  ( c = k -> ( c < D <-> k < D ) ) | 
						
							| 108 |  | breq1 |  |-  ( c = k -> ( c || ( # ` B ) <-> k || ( # ` B ) ) ) | 
						
							| 109 |  | eqeq2 |  |-  ( c = k -> ( ( ( od ` G ) ` x ) = c <-> ( ( od ` G ) ` x ) = k ) ) | 
						
							| 110 | 109 | rabbidv |  |-  ( c = k -> { x e. B | ( ( od ` G ) ` x ) = c } = { x e. B | ( ( od ` G ) ` x ) = k } ) | 
						
							| 111 | 110 | neeq1d |  |-  ( c = k -> ( { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) | 
						
							| 112 | 108 111 | anbi12d |  |-  ( c = k -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) <-> ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) ) | 
						
							| 113 | 110 | fveq2d |  |-  ( c = k -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) | 
						
							| 114 |  | fveq2 |  |-  ( c = k -> ( phi ` c ) = ( phi ` k ) ) | 
						
							| 115 | 113 114 | eqeq12d |  |-  ( c = k -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) | 
						
							| 116 | 112 115 | imbi12d |  |-  ( c = k -> ( ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) <-> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) ) | 
						
							| 117 | 107 116 | imbi12d |  |-  ( c = k -> ( ( c < D -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) <-> ( k < D -> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) ) ) | 
						
							| 118 | 10 | adantr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> A. c e. NN ( c < D -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 119 | 117 118 98 | rspcdva |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( k < D -> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) ) | 
						
							| 120 | 106 119 | mpd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) | 
						
							| 121 | 95 120 | mpd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) | 
						
							| 122 | 121 | sumeq2dv |  |-  ( ph -> sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) ) | 
						
							| 123 | 122 | eqcomd |  |-  ( ph -> sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) = sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) | 
						
							| 124 | 123 | oveq1d |  |-  ( ph -> ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) ) | 
						
							| 125 |  | elun |  |-  ( y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) <-> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) | 
						
							| 126 | 125 | biimpi |  |-  ( y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) | 
						
							| 127 | 126 | adantl |  |-  ( ( ph /\ y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) | 
						
							| 128 |  | 1zzd |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> 1 e. ZZ ) | 
						
							| 129 | 6 | adantr |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> D e. NN ) | 
						
							| 130 | 129 | nnzd |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> D e. ZZ ) | 
						
							| 131 |  | elfzelz |  |-  ( a e. ( 1 ... ( D - 1 ) ) -> a e. ZZ ) | 
						
							| 132 | 131 | adantr |  |-  ( ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) -> a e. ZZ ) | 
						
							| 133 | 132 | adantl |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a e. ZZ ) | 
						
							| 134 |  | elfzle1 |  |-  ( a e. ( 1 ... ( D - 1 ) ) -> 1 <_ a ) | 
						
							| 135 | 134 | adantr |  |-  ( ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) -> 1 <_ a ) | 
						
							| 136 | 135 | adantl |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> 1 <_ a ) | 
						
							| 137 | 133 | zred |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a e. RR ) | 
						
							| 138 | 129 | nnred |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> D e. RR ) | 
						
							| 139 |  | 1red |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> 1 e. RR ) | 
						
							| 140 | 138 139 | resubcld |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> ( D - 1 ) e. RR ) | 
						
							| 141 |  | elfzle2 |  |-  ( a e. ( 1 ... ( D - 1 ) ) -> a <_ ( D - 1 ) ) | 
						
							| 142 | 141 | adantr |  |-  ( ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) -> a <_ ( D - 1 ) ) | 
						
							| 143 | 142 | adantl |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a <_ ( D - 1 ) ) | 
						
							| 144 | 138 | ltm1d |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> ( D - 1 ) < D ) | 
						
							| 145 | 137 140 138 143 144 | lelttrd |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a < D ) | 
						
							| 146 | 137 138 145 | ltled |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a <_ D ) | 
						
							| 147 | 128 130 133 136 146 | elfzd |  |-  ( ( ph /\ ( a e. ( 1 ... ( D - 1 ) ) /\ a || D ) ) -> a e. ( 1 ... D ) ) | 
						
							| 148 | 147 | rabss3d |  |-  ( ph -> { a e. ( 1 ... ( D - 1 ) ) | a || D } C_ { a e. ( 1 ... D ) | a || D } ) | 
						
							| 149 | 148 | sseld |  |-  ( ph -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } -> y e. { a e. ( 1 ... D ) | a || D } ) ) | 
						
							| 150 | 149 | imp |  |-  ( ( ph /\ y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) | 
						
							| 151 |  | elsni |  |-  ( y e. { D } -> y = D ) | 
						
							| 152 | 151 | adantl |  |-  ( ( ph /\ y e. { D } ) -> y = D ) | 
						
							| 153 |  | simpr |  |-  ( ( ph /\ y = D ) -> y = D ) | 
						
							| 154 |  | breq1 |  |-  ( a = D -> ( a || D <-> D || D ) ) | 
						
							| 155 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 156 | 6 | nnzd |  |-  ( ph -> D e. ZZ ) | 
						
							| 157 | 6 | nnge1d |  |-  ( ph -> 1 <_ D ) | 
						
							| 158 | 6 | nnred |  |-  ( ph -> D e. RR ) | 
						
							| 159 | 158 | leidd |  |-  ( ph -> D <_ D ) | 
						
							| 160 | 155 156 156 157 159 | elfzd |  |-  ( ph -> D e. ( 1 ... D ) ) | 
						
							| 161 |  | iddvds |  |-  ( D e. ZZ -> D || D ) | 
						
							| 162 | 156 161 | syl |  |-  ( ph -> D || D ) | 
						
							| 163 | 154 160 162 | elrabd |  |-  ( ph -> D e. { a e. ( 1 ... D ) | a || D } ) | 
						
							| 164 | 163 | adantr |  |-  ( ( ph /\ y = D ) -> D e. { a e. ( 1 ... D ) | a || D } ) | 
						
							| 165 | 153 164 | eqeltrd |  |-  ( ( ph /\ y = D ) -> y e. { a e. ( 1 ... D ) | a || D } ) | 
						
							| 166 | 165 | ex |  |-  ( ph -> ( y = D -> y e. { a e. ( 1 ... D ) | a || D } ) ) | 
						
							| 167 | 166 | adantr |  |-  ( ( ph /\ y e. { D } ) -> ( y = D -> y e. { a e. ( 1 ... D ) | a || D } ) ) | 
						
							| 168 | 152 167 | mpd |  |-  ( ( ph /\ y e. { D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) | 
						
							| 169 | 150 168 | jaodan |  |-  ( ( ph /\ ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) -> y e. { a e. ( 1 ... D ) | a || D } ) | 
						
							| 170 | 169 | ex |  |-  ( ph -> ( ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) ) | 
						
							| 171 | 170 | adantr |  |-  ( ( ph /\ y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) -> ( ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) ) | 
						
							| 172 | 127 171 | mpd |  |-  ( ( ph /\ y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) -> y e. { a e. ( 1 ... D ) | a || D } ) | 
						
							| 173 | 172 | ex |  |-  ( ph -> ( y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) ) | 
						
							| 174 |  | simpr |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> y = D ) | 
						
							| 175 |  | eqidd |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> D = D ) | 
						
							| 176 | 6 | ad2antrr |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> D e. NN ) | 
						
							| 177 |  | elsng |  |-  ( D e. NN -> ( D e. { D } <-> D = D ) ) | 
						
							| 178 | 176 177 | syl |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> ( D e. { D } <-> D = D ) ) | 
						
							| 179 | 175 178 | mpbird |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> D e. { D } ) | 
						
							| 180 | 174 179 | eqeltrd |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> y e. { D } ) | 
						
							| 181 | 180 | olcd |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ y = D ) -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) | 
						
							| 182 |  | breq1 |  |-  ( a = y -> ( a || D <-> y || D ) ) | 
						
							| 183 | 182 | elrab |  |-  ( y e. { a e. ( 1 ... D ) | a || D } <-> ( y e. ( 1 ... D ) /\ y || D ) ) | 
						
							| 184 | 183 | biimpi |  |-  ( y e. { a e. ( 1 ... D ) | a || D } -> ( y e. ( 1 ... D ) /\ y || D ) ) | 
						
							| 185 | 184 | adantl |  |-  ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) -> ( y e. ( 1 ... D ) /\ y || D ) ) | 
						
							| 186 | 185 | adantr |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> ( y e. ( 1 ... D ) /\ y || D ) ) | 
						
							| 187 |  | 1zzd |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> 1 e. ZZ ) | 
						
							| 188 | 156 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> D e. ZZ ) | 
						
							| 189 | 188 187 | zsubcld |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> ( D - 1 ) e. ZZ ) | 
						
							| 190 |  | elfzelz |  |-  ( y e. ( 1 ... D ) -> y e. ZZ ) | 
						
							| 191 | 190 | adantr |  |-  ( ( y e. ( 1 ... D ) /\ y || D ) -> y e. ZZ ) | 
						
							| 192 | 191 | adantl |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y e. ZZ ) | 
						
							| 193 |  | elfzle1 |  |-  ( y e. ( 1 ... D ) -> 1 <_ y ) | 
						
							| 194 | 193 | adantr |  |-  ( ( y e. ( 1 ... D ) /\ y || D ) -> 1 <_ y ) | 
						
							| 195 | 194 | adantl |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> 1 <_ y ) | 
						
							| 196 |  | elfzle2 |  |-  ( y e. ( 1 ... D ) -> y <_ D ) | 
						
							| 197 | 196 | adantr |  |-  ( ( y e. ( 1 ... D ) /\ y || D ) -> y <_ D ) | 
						
							| 198 | 197 | adantl |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y <_ D ) | 
						
							| 199 |  | neqne |  |-  ( -. y = D -> y =/= D ) | 
						
							| 200 | 199 | adantl |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> y =/= D ) | 
						
							| 201 | 200 | necomd |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> D =/= y ) | 
						
							| 202 | 201 | adantr |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> D =/= y ) | 
						
							| 203 | 198 202 | jca |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> ( y <_ D /\ D =/= y ) ) | 
						
							| 204 | 192 | zred |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y e. RR ) | 
						
							| 205 | 158 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> D e. RR ) | 
						
							| 206 | 204 205 | ltlend |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> ( y < D <-> ( y <_ D /\ D =/= y ) ) ) | 
						
							| 207 | 203 206 | mpbird |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y < D ) | 
						
							| 208 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> D e. NN ) | 
						
							| 209 | 208 | nnzd |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> D e. ZZ ) | 
						
							| 210 | 192 209 | zltlem1d |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> ( y < D <-> y <_ ( D - 1 ) ) ) | 
						
							| 211 | 207 210 | mpbid |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y <_ ( D - 1 ) ) | 
						
							| 212 | 187 189 192 195 211 | elfzd |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y e. ( 1 ... ( D - 1 ) ) ) | 
						
							| 213 |  | simprr |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y || D ) | 
						
							| 214 | 182 212 213 | elrabd |  |-  ( ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) /\ ( y e. ( 1 ... D ) /\ y || D ) ) -> y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) | 
						
							| 215 | 214 | ex |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> ( ( y e. ( 1 ... D ) /\ y || D ) -> y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) ) | 
						
							| 216 | 186 215 | mpd |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) | 
						
							| 217 | 216 | orcd |  |-  ( ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) /\ -. y = D ) -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) | 
						
							| 218 | 181 217 | pm2.61dan |  |-  ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) -> ( y e. { a e. ( 1 ... ( D - 1 ) ) | a || D } \/ y e. { D } ) ) | 
						
							| 219 | 218 125 | sylibr |  |-  ( ( ph /\ y e. { a e. ( 1 ... D ) | a || D } ) -> y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) | 
						
							| 220 | 219 | ex |  |-  ( ph -> ( y e. { a e. ( 1 ... D ) | a || D } -> y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) ) | 
						
							| 221 | 173 220 | impbid |  |-  ( ph -> ( y e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) <-> y e. { a e. ( 1 ... D ) | a || D } ) ) | 
						
							| 222 | 221 | eqrdv |  |-  ( ph -> ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) = { a e. ( 1 ... D ) | a || D } ) | 
						
							| 223 | 222 | sumeq1d |  |-  ( ph -> sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( phi ` k ) = sum_ k e. { a e. ( 1 ... D ) | a || D } ( phi ` k ) ) | 
						
							| 224 |  | phisum |  |-  ( D e. NN -> sum_ k e. { a e. NN | a || D } ( phi ` k ) = D ) | 
						
							| 225 | 6 224 | syl |  |-  ( ph -> sum_ k e. { a e. NN | a || D } ( phi ` k ) = D ) | 
						
							| 226 |  | eqcom |  |-  ( ( ( od ` G ) ` A ) = D <-> D = ( ( od ` G ) ` A ) ) | 
						
							| 227 | 226 | imbi2i |  |-  ( ( ph -> ( ( od ` G ) ` A ) = D ) <-> ( ph -> D = ( ( od ` G ) ` A ) ) ) | 
						
							| 228 | 9 227 | mpbi |  |-  ( ph -> D = ( ( od ` G ) ` A ) ) | 
						
							| 229 | 228 | oveq1d |  |-  ( ph -> ( D .^ x ) = ( ( ( od ` G ) ` A ) .^ x ) ) | 
						
							| 230 | 229 | eqeq1d |  |-  ( ph -> ( ( D .^ x ) = ( 0g ` G ) <-> ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) ) ) | 
						
							| 231 | 230 | rabbidv |  |-  ( ph -> { x e. B | ( D .^ x ) = ( 0g ` G ) } = { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) | 
						
							| 232 | 231 | fveq2d |  |-  ( ph -> ( # ` { x e. B | ( D .^ x ) = ( 0g ` G ) } ) = ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 233 | 1 2 3 4 5 8 | unitscyglem1 |  |-  ( ph -> ( # ` { x e. B | ( ( ( od ` G ) ` A ) .^ x ) = ( 0g ` G ) } ) = ( ( od ` G ) ` A ) ) | 
						
							| 234 | 232 233 | eqtrd |  |-  ( ph -> ( # ` { x e. B | ( D .^ x ) = ( 0g ` G ) } ) = ( ( od ` G ) ` A ) ) | 
						
							| 235 | 234 9 | eqtr2d |  |-  ( ph -> D = ( # ` { x e. B | ( D .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 236 | 1 2 3 4 6 | grpods |  |-  ( ph -> sum_ k e. { a e. ( 1 ... D ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( # ` { x e. B | ( D .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 237 | 235 236 | eqtr4d |  |-  ( ph -> D = sum_ k e. { a e. ( 1 ... D ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) | 
						
							| 238 | 222 | eqcomd |  |-  ( ph -> { a e. ( 1 ... D ) | a || D } = ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ) | 
						
							| 239 | 238 | sumeq1d |  |-  ( ph -> sum_ k e. { a e. ( 1 ... D ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) | 
						
							| 240 | 237 239 | eqtrd |  |-  ( ph -> D = sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) | 
						
							| 241 | 225 240 | eqtr2d |  |-  ( ph -> sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = sum_ k e. { a e. NN | a || D } ( phi ` k ) ) | 
						
							| 242 |  | 1zzd |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> 1 e. ZZ ) | 
						
							| 243 | 156 | adantr |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> D e. ZZ ) | 
						
							| 244 | 182 | elrab |  |-  ( y e. { a e. NN | a || D } <-> ( y e. NN /\ y || D ) ) | 
						
							| 245 | 244 | biimpi |  |-  ( y e. { a e. NN | a || D } -> ( y e. NN /\ y || D ) ) | 
						
							| 246 | 245 | adantl |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> ( y e. NN /\ y || D ) ) | 
						
							| 247 | 246 | simpld |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> y e. NN ) | 
						
							| 248 | 247 | nnzd |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> y e. ZZ ) | 
						
							| 249 | 247 | nnge1d |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> 1 <_ y ) | 
						
							| 250 | 246 | simprd |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> y || D ) | 
						
							| 251 | 6 | adantr |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> D e. NN ) | 
						
							| 252 |  | dvdsle |  |-  ( ( y e. ZZ /\ D e. NN ) -> ( y || D -> y <_ D ) ) | 
						
							| 253 | 248 251 252 | syl2anc |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> ( y || D -> y <_ D ) ) | 
						
							| 254 | 250 253 | mpd |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> y <_ D ) | 
						
							| 255 | 242 243 248 249 254 | elfzd |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> y e. ( 1 ... D ) ) | 
						
							| 256 | 182 255 250 | elrabd |  |-  ( ( ph /\ y e. { a e. NN | a || D } ) -> y e. { a e. ( 1 ... D ) | a || D } ) | 
						
							| 257 | 256 | ex |  |-  ( ph -> ( y e. { a e. NN | a || D } -> y e. { a e. ( 1 ... D ) | a || D } ) ) | 
						
							| 258 |  | elfzelz |  |-  ( a e. ( 1 ... D ) -> a e. ZZ ) | 
						
							| 259 |  | elfzle1 |  |-  ( a e. ( 1 ... D ) -> 1 <_ a ) | 
						
							| 260 | 258 259 | jca |  |-  ( a e. ( 1 ... D ) -> ( a e. ZZ /\ 1 <_ a ) ) | 
						
							| 261 | 260 | adantr |  |-  ( ( a e. ( 1 ... D ) /\ a || D ) -> ( a e. ZZ /\ 1 <_ a ) ) | 
						
							| 262 | 261 | adantl |  |-  ( ( ph /\ ( a e. ( 1 ... D ) /\ a || D ) ) -> ( a e. ZZ /\ 1 <_ a ) ) | 
						
							| 263 |  | elnnz1 |  |-  ( a e. NN <-> ( a e. ZZ /\ 1 <_ a ) ) | 
						
							| 264 | 262 263 | sylibr |  |-  ( ( ph /\ ( a e. ( 1 ... D ) /\ a || D ) ) -> a e. NN ) | 
						
							| 265 | 264 | rabss3d |  |-  ( ph -> { a e. ( 1 ... D ) | a || D } C_ { a e. NN | a || D } ) | 
						
							| 266 | 265 | sseld |  |-  ( ph -> ( y e. { a e. ( 1 ... D ) | a || D } -> y e. { a e. NN | a || D } ) ) | 
						
							| 267 | 257 266 | impbid |  |-  ( ph -> ( y e. { a e. NN | a || D } <-> y e. { a e. ( 1 ... D ) | a || D } ) ) | 
						
							| 268 | 267 | eqrdv |  |-  ( ph -> { a e. NN | a || D } = { a e. ( 1 ... D ) | a || D } ) | 
						
							| 269 | 268 | sumeq1d |  |-  ( ph -> sum_ k e. { a e. NN | a || D } ( phi ` k ) = sum_ k e. { a e. ( 1 ... D ) | a || D } ( phi ` k ) ) | 
						
							| 270 | 241 269 | eqtr2d |  |-  ( ph -> sum_ k e. { a e. ( 1 ... D ) | a || D } ( phi ` k ) = sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) | 
						
							| 271 | 223 270 | eqtrd |  |-  ( ph -> sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( phi ` k ) = sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) | 
						
							| 272 |  | nfv |  |-  F/ k ph | 
						
							| 273 |  | nfcv |  |-  F/_ k ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) | 
						
							| 274 |  | fzfid |  |-  ( ph -> ( 1 ... ( D - 1 ) ) e. Fin ) | 
						
							| 275 |  | ssrab2 |  |-  { a e. ( 1 ... ( D - 1 ) ) | a || D } C_ ( 1 ... ( D - 1 ) ) | 
						
							| 276 | 275 | a1i |  |-  ( ph -> { a e. ( 1 ... ( D - 1 ) ) | a || D } C_ ( 1 ... ( D - 1 ) ) ) | 
						
							| 277 | 274 276 | ssfid |  |-  ( ph -> { a e. ( 1 ... ( D - 1 ) ) | a || D } e. Fin ) | 
						
							| 278 | 154 | elrab |  |-  ( D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } <-> ( D e. ( 1 ... ( D - 1 ) ) /\ D || D ) ) | 
						
							| 279 | 278 | biimpi |  |-  ( D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } -> ( D e. ( 1 ... ( D - 1 ) ) /\ D || D ) ) | 
						
							| 280 | 279 | simpld |  |-  ( D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } -> D e. ( 1 ... ( D - 1 ) ) ) | 
						
							| 281 | 280 | adantl |  |-  ( ( ph /\ D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D e. ( 1 ... ( D - 1 ) ) ) | 
						
							| 282 |  | elfzle2 |  |-  ( D e. ( 1 ... ( D - 1 ) ) -> D <_ ( D - 1 ) ) | 
						
							| 283 | 281 282 | syl |  |-  ( ( ph /\ D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> D <_ ( D - 1 ) ) | 
						
							| 284 | 158 | ltm1d |  |-  ( ph -> ( D - 1 ) < D ) | 
						
							| 285 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 286 | 158 285 | resubcld |  |-  ( ph -> ( D - 1 ) e. RR ) | 
						
							| 287 | 286 158 | ltnled |  |-  ( ph -> ( ( D - 1 ) < D <-> -. D <_ ( D - 1 ) ) ) | 
						
							| 288 | 284 287 | mpbid |  |-  ( ph -> -. D <_ ( D - 1 ) ) | 
						
							| 289 | 288 | adantr |  |-  ( ( ph /\ D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> -. D <_ ( D - 1 ) ) | 
						
							| 290 | 283 289 | pm2.21dd |  |-  ( ( ph /\ D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> -. D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) | 
						
							| 291 |  | simpr |  |-  ( ( ph /\ -. D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> -. D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) | 
						
							| 292 | 290 291 | pm2.61dan |  |-  ( ph -> -. D e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) | 
						
							| 293 | 4 | adantr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> B e. Fin ) | 
						
							| 294 |  | ssrab2 |  |-  { x e. B | ( ( od ` G ) ` x ) = k } C_ B | 
						
							| 295 | 294 | a1i |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> { x e. B | ( ( od ` G ) ` x ) = k } C_ B ) | 
						
							| 296 | 293 295 | ssfid |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> { x e. B | ( ( od ` G ) ` x ) = k } e. Fin ) | 
						
							| 297 |  | hashcl |  |-  ( { x e. B | ( ( od ` G ) ` x ) = k } e. Fin -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. NN0 ) | 
						
							| 298 | 296 297 | syl |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. NN0 ) | 
						
							| 299 | 298 | nn0cnd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. CC ) | 
						
							| 300 |  | eqeq2 |  |-  ( k = D -> ( ( ( od ` G ) ` x ) = k <-> ( ( od ` G ) ` x ) = D ) ) | 
						
							| 301 | 300 | rabbidv |  |-  ( k = D -> { x e. B | ( ( od ` G ) ` x ) = k } = { x e. B | ( ( od ` G ) ` x ) = D } ) | 
						
							| 302 | 301 | fveq2d |  |-  ( k = D -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) | 
						
							| 303 |  | ssrab2 |  |-  { x e. B | ( ( od ` G ) ` x ) = D } C_ B | 
						
							| 304 | 303 | a1i |  |-  ( ph -> { x e. B | ( ( od ` G ) ` x ) = D } C_ B ) | 
						
							| 305 | 4 304 | ssfid |  |-  ( ph -> { x e. B | ( ( od ` G ) ` x ) = D } e. Fin ) | 
						
							| 306 |  | hashcl |  |-  ( { x e. B | ( ( od ` G ) ` x ) = D } e. Fin -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) e. NN0 ) | 
						
							| 307 | 305 306 | syl |  |-  ( ph -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) e. NN0 ) | 
						
							| 308 | 307 | nn0cnd |  |-  ( ph -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) e. CC ) | 
						
							| 309 | 272 273 277 6 292 299 302 308 | fsumsplitsn |  |-  ( ph -> sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) ) | 
						
							| 310 | 271 309 | eqtr2d |  |-  ( ph -> ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) = sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( phi ` k ) ) | 
						
							| 311 |  | nfcv |  |-  F/_ k ( phi ` D ) | 
						
							| 312 | 121 299 | eqeltrrd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ) -> ( phi ` k ) e. CC ) | 
						
							| 313 |  | fveq2 |  |-  ( k = D -> ( phi ` k ) = ( phi ` D ) ) | 
						
							| 314 | 6 | phicld |  |-  ( ph -> ( phi ` D ) e. NN ) | 
						
							| 315 | 314 | nncnd |  |-  ( ph -> ( phi ` D ) e. CC ) | 
						
							| 316 | 272 311 277 6 292 312 313 315 | fsumsplitsn |  |-  ( ph -> sum_ k e. ( { a e. ( 1 ... ( D - 1 ) ) | a || D } u. { D } ) ( phi ` k ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( phi ` D ) ) ) | 
						
							| 317 | 310 316 | eqtrd |  |-  ( ph -> ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( phi ` D ) ) ) | 
						
							| 318 | 124 317 | eqtrd |  |-  ( ph -> ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( phi ` D ) ) ) | 
						
							| 319 | 277 312 | fsumcl |  |-  ( ph -> sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) e. CC ) | 
						
							| 320 | 319 308 315 | addcand |  |-  ( ph -> ( ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) = ( sum_ k e. { a e. ( 1 ... ( D - 1 ) ) | a || D } ( phi ` k ) + ( phi ` D ) ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) = ( phi ` D ) ) ) | 
						
							| 321 | 318 320 | mpbid |  |-  ( ph -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) = ( phi ` D ) ) |