Metamath Proof Explorer


Theorem unitscyglem2

Description: Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025)

Ref Expression
Hypotheses unitscyglem1.1 B = Base G
unitscyglem1.2 × ˙ = G
unitscyglem1.3 φ G Grp
unitscyglem1.4 φ B Fin
unitscyglem1.5 φ n x B | n × ˙ x = 0 G n
unitscyglem2.1 φ D
unitscyglem2.2 φ D B
unitscyglem2.3 φ A B
unitscyglem2.4 φ od G A = D
unitscyglem2.5 φ c c < D c B x B | od G x = c x B | od G x = c = ϕ c
Assertion unitscyglem2 φ x B | od G x = D = ϕ D

Proof

Step Hyp Ref Expression
1 unitscyglem1.1 B = Base G
2 unitscyglem1.2 × ˙ = G
3 unitscyglem1.3 φ G Grp
4 unitscyglem1.4 φ B Fin
5 unitscyglem1.5 φ n x B | n × ˙ x = 0 G n
6 unitscyglem2.1 φ D
7 unitscyglem2.2 φ D B
8 unitscyglem2.3 φ A B
9 unitscyglem2.4 φ od G A = D
10 unitscyglem2.5 φ c c < D c B x B | od G x = c x B | od G x = c = ϕ c
11 breq1 a = k a D k D
12 11 elrab k a 1 D 1 | a D k 1 D 1 k D
13 12 biimpi k a 1 D 1 | a D k 1 D 1 k D
14 13 adantl φ k a 1 D 1 | a D k 1 D 1 k D
15 14 simpld φ k a 1 D 1 | a D k 1 D 1
16 15 elfzelzd φ k a 1 D 1 | a D k
17 6 adantr φ k a 1 D 1 | a D D
18 17 nnzd φ k a 1 D 1 | a D D
19 hashcl B Fin B 0
20 4 19 syl φ B 0
21 20 adantr φ k a 1 D 1 | a D B 0
22 21 nn0zd φ k a 1 D 1 | a D B
23 14 simprd φ k a 1 D 1 | a D k D
24 7 adantr φ k a 1 D 1 | a D D B
25 16 18 22 23 24 dvdstrd φ k a 1 D 1 | a D k B
26 simpl φ k 1 D 1 k D φ
27 12 15 sylan2br φ k 1 D 1 k D k 1 D 1
28 26 27 jca φ k 1 D 1 k D φ k 1 D 1
29 12 23 sylan2br φ k 1 D 1 k D k D
30 28 29 jca φ k 1 D 1 k D φ k 1 D 1 k D
31 fveqeq2 x = D k × ˙ A od G x = k od G D k × ˙ A = k
32 3 ad4antr φ k 1 D 1 k D l l k = D G Grp
33 simpr φ k 1 D 1 k D l l k = D l k = D
34 33 eqcomd φ k 1 D 1 k D l l k = D D = l k
35 34 oveq1d φ k 1 D 1 k D l l k = D D k = l k k
36 simplr φ k 1 D 1 k D l l k = D l
37 36 nncnd φ k 1 D 1 k D l l k = D l
38 elfzelz k 1 D 1 k
39 38 adantl φ k 1 D 1 k
40 39 ad3antrrr φ k 1 D 1 k D l l k = D k
41 40 zcnd φ k 1 D 1 k D l l k = D k
42 elfzle1 k 1 D 1 1 k
43 42 adantl φ k 1 D 1 1 k
44 39 43 jca φ k 1 D 1 k 1 k
45 elnnz1 k k 1 k
46 44 45 sylibr φ k 1 D 1 k
47 46 adantr φ k 1 D 1 k D k
48 47 ad2antrr φ k 1 D 1 k D l l k = D k
49 48 nnne0d φ k 1 D 1 k D l l k = D k 0
50 37 41 49 divcan4d φ k 1 D 1 k D l l k = D l k k = l
51 35 50 eqtrd φ k 1 D 1 k D l l k = D D k = l
52 51 36 eqeltrd φ k 1 D 1 k D l l k = D D k
53 52 nnnn0d φ k 1 D 1 k D l l k = D D k 0
54 53 nn0zd φ k 1 D 1 k D l l k = D D k
55 8 ad4antr φ k 1 D 1 k D l l k = D A B
56 1 2 32 54 55 mulgcld φ k 1 D 1 k D l l k = D D k × ˙ A B
57 6 ad2antrr φ k 1 D 1 k D D
58 57 ad2antrr φ k 1 D 1 k D l l k = D D
59 58 nncnd φ k 1 D 1 k D l l k = D D
60 59 41 49 divcan1d φ k 1 D 1 k D l l k = D D k k = D
61 9 ad4antr φ k 1 D 1 k D l l k = D od G A = D
62 61 eqcomd φ k 1 D 1 k D l l k = D D = od G A
63 eqid od G = od G
64 1 63 2 odmulg G Grp A B D k od G A = D k gcd od G A od G D k × ˙ A
65 32 55 54 64 syl3anc φ k 1 D 1 k D l l k = D od G A = D k gcd od G A od G D k × ˙ A
66 62 65 eqtrd φ k 1 D 1 k D l l k = D D = D k gcd od G A od G D k × ˙ A
67 61 oveq2d φ k 1 D 1 k D l l k = D D k gcd od G A = D k gcd D
68 59 41 49 divcan2d φ k 1 D 1 k D l l k = D k D k = D
69 68 eqcomd φ k 1 D 1 k D l l k = D D = k D k
70 69 oveq2d φ k 1 D 1 k D l l k = D D k gcd D = D k gcd k D k
71 53 40 gcdmultipled φ k 1 D 1 k D l l k = D D k gcd k D k = D k
72 70 71 eqtrd φ k 1 D 1 k D l l k = D D k gcd D = D k
73 67 72 eqtrd φ k 1 D 1 k D l l k = D D k gcd od G A = D k
74 73 oveq1d φ k 1 D 1 k D l l k = D D k gcd od G A od G D k × ˙ A = D k od G D k × ˙ A
75 66 74 eqtrd φ k 1 D 1 k D l l k = D D = D k od G D k × ˙ A
76 60 75 eqtr2d φ k 1 D 1 k D l l k = D D k od G D k × ˙ A = D k k
77 1 63 56 odcld φ k 1 D 1 k D l l k = D od G D k × ˙ A 0
78 77 nn0cnd φ k 1 D 1 k D l l k = D od G D k × ˙ A
79 54 zcnd φ k 1 D 1 k D l l k = D D k
80 58 nnne0d φ k 1 D 1 k D l l k = D D 0
81 59 41 80 49 divne0d φ k 1 D 1 k D l l k = D D k 0
82 78 41 79 81 mulcand φ k 1 D 1 k D l l k = D D k od G D k × ˙ A = D k k od G D k × ˙ A = k
83 76 82 mpbid φ k 1 D 1 k D l l k = D od G D k × ˙ A = k
84 31 56 83 elrabd φ k 1 D 1 k D l l k = D D k × ˙ A x B | od G x = k
85 84 ne0d φ k 1 D 1 k D l l k = D x B | od G x = k
86 nndivides k D k D l l k = D
87 47 57 86 syl2anc φ k 1 D 1 k D k D l l k = D
88 87 biimpd φ k 1 D 1 k D k D l l k = D
89 88 syldbl2 φ k 1 D 1 k D l l k = D
90 85 89 r19.29a φ k 1 D 1 k D x B | od G x = k
91 30 90 syl φ k 1 D 1 k D x B | od G x = k
92 91 ex φ k 1 D 1 k D x B | od G x = k
93 92 adantr φ k a 1 D 1 | a D k 1 D 1 k D x B | od G x = k
94 14 93 mpd φ k a 1 D 1 | a D x B | od G x = k
95 25 94 jca φ k a 1 D 1 | a D k B x B | od G x = k
96 15 42 syl φ k a 1 D 1 | a D 1 k
97 16 96 jca φ k a 1 D 1 | a D k 1 k
98 97 45 sylibr φ k a 1 D 1 | a D k
99 98 nnred φ k a 1 D 1 | a D k
100 17 nnred φ k a 1 D 1 | a D D
101 1red φ k a 1 D 1 | a D 1
102 100 101 resubcld φ k a 1 D 1 | a D D 1
103 elfzle2 k 1 D 1 k D 1
104 15 103 syl φ k a 1 D 1 | a D k D 1
105 100 ltm1d φ k a 1 D 1 | a D D 1 < D
106 99 102 100 104 105 lelttrd φ k a 1 D 1 | a D k < D
107 breq1 c = k c < D k < D
108 breq1 c = k c B k B
109 eqeq2 c = k od G x = c od G x = k
110 109 rabbidv c = k x B | od G x = c = x B | od G x = k
111 110 neeq1d c = k x B | od G x = c x B | od G x = k
112 108 111 anbi12d c = k c B x B | od G x = c k B x B | od G x = k
113 110 fveq2d c = k x B | od G x = c = x B | od G x = k
114 fveq2 c = k ϕ c = ϕ k
115 113 114 eqeq12d c = k x B | od G x = c = ϕ c x B | od G x = k = ϕ k
116 112 115 imbi12d c = k c B x B | od G x = c x B | od G x = c = ϕ c k B x B | od G x = k x B | od G x = k = ϕ k
117 107 116 imbi12d c = k c < D c B x B | od G x = c x B | od G x = c = ϕ c k < D k B x B | od G x = k x B | od G x = k = ϕ k
118 10 adantr φ k a 1 D 1 | a D c c < D c B x B | od G x = c x B | od G x = c = ϕ c
119 117 118 98 rspcdva φ k a 1 D 1 | a D k < D k B x B | od G x = k x B | od G x = k = ϕ k
120 106 119 mpd φ k a 1 D 1 | a D k B x B | od G x = k x B | od G x = k = ϕ k
121 95 120 mpd φ k a 1 D 1 | a D x B | od G x = k = ϕ k
122 121 sumeq2dv φ k a 1 D 1 | a D x B | od G x = k = k a 1 D 1 | a D ϕ k
123 122 eqcomd φ k a 1 D 1 | a D ϕ k = k a 1 D 1 | a D x B | od G x = k
124 123 oveq1d φ k a 1 D 1 | a D ϕ k + x B | od G x = D = k a 1 D 1 | a D x B | od G x = k + x B | od G x = D
125 elun y a 1 D 1 | a D D y a 1 D 1 | a D y D
126 125 biimpi y a 1 D 1 | a D D y a 1 D 1 | a D y D
127 126 adantl φ y a 1 D 1 | a D D y a 1 D 1 | a D y D
128 1zzd φ a 1 D 1 a D 1
129 6 adantr φ a 1 D 1 a D D
130 129 nnzd φ a 1 D 1 a D D
131 elfzelz a 1 D 1 a
132 131 adantr a 1 D 1 a D a
133 132 adantl φ a 1 D 1 a D a
134 elfzle1 a 1 D 1 1 a
135 134 adantr a 1 D 1 a D 1 a
136 135 adantl φ a 1 D 1 a D 1 a
137 133 zred φ a 1 D 1 a D a
138 129 nnred φ a 1 D 1 a D D
139 1red φ a 1 D 1 a D 1
140 138 139 resubcld φ a 1 D 1 a D D 1
141 elfzle2 a 1 D 1 a D 1
142 141 adantr a 1 D 1 a D a D 1
143 142 adantl φ a 1 D 1 a D a D 1
144 138 ltm1d φ a 1 D 1 a D D 1 < D
145 137 140 138 143 144 lelttrd φ a 1 D 1 a D a < D
146 137 138 145 ltled φ a 1 D 1 a D a D
147 128 130 133 136 146 elfzd φ a 1 D 1 a D a 1 D
148 147 rabss3d φ a 1 D 1 | a D a 1 D | a D
149 148 sseld φ y a 1 D 1 | a D y a 1 D | a D
150 149 imp φ y a 1 D 1 | a D y a 1 D | a D
151 elsni y D y = D
152 151 adantl φ y D y = D
153 simpr φ y = D y = D
154 breq1 a = D a D D D
155 1zzd φ 1
156 6 nnzd φ D
157 6 nnge1d φ 1 D
158 6 nnred φ D
159 158 leidd φ D D
160 155 156 156 157 159 elfzd φ D 1 D
161 iddvds D D D
162 156 161 syl φ D D
163 154 160 162 elrabd φ D a 1 D | a D
164 163 adantr φ y = D D a 1 D | a D
165 153 164 eqeltrd φ y = D y a 1 D | a D
166 165 ex φ y = D y a 1 D | a D
167 166 adantr φ y D y = D y a 1 D | a D
168 152 167 mpd φ y D y a 1 D | a D
169 150 168 jaodan φ y a 1 D 1 | a D y D y a 1 D | a D
170 169 ex φ y a 1 D 1 | a D y D y a 1 D | a D
171 170 adantr φ y a 1 D 1 | a D D y a 1 D 1 | a D y D y a 1 D | a D
172 127 171 mpd φ y a 1 D 1 | a D D y a 1 D | a D
173 172 ex φ y a 1 D 1 | a D D y a 1 D | a D
174 simpr φ y a 1 D | a D y = D y = D
175 eqidd φ y a 1 D | a D y = D D = D
176 6 ad2antrr φ y a 1 D | a D y = D D
177 elsng D D D D = D
178 176 177 syl φ y a 1 D | a D y = D D D D = D
179 175 178 mpbird φ y a 1 D | a D y = D D D
180 174 179 eqeltrd φ y a 1 D | a D y = D y D
181 180 olcd φ y a 1 D | a D y = D y a 1 D 1 | a D y D
182 breq1 a = y a D y D
183 182 elrab y a 1 D | a D y 1 D y D
184 183 biimpi y a 1 D | a D y 1 D y D
185 184 adantl φ y a 1 D | a D y 1 D y D
186 185 adantr φ y a 1 D | a D ¬ y = D y 1 D y D
187 1zzd φ y a 1 D | a D ¬ y = D y 1 D y D 1
188 156 ad3antrrr φ y a 1 D | a D ¬ y = D y 1 D y D D
189 188 187 zsubcld φ y a 1 D | a D ¬ y = D y 1 D y D D 1
190 elfzelz y 1 D y
191 190 adantr y 1 D y D y
192 191 adantl φ y a 1 D | a D ¬ y = D y 1 D y D y
193 elfzle1 y 1 D 1 y
194 193 adantr y 1 D y D 1 y
195 194 adantl φ y a 1 D | a D ¬ y = D y 1 D y D 1 y
196 elfzle2 y 1 D y D
197 196 adantr y 1 D y D y D
198 197 adantl φ y a 1 D | a D ¬ y = D y 1 D y D y D
199 neqne ¬ y = D y D
200 199 adantl φ y a 1 D | a D ¬ y = D y D
201 200 necomd φ y a 1 D | a D ¬ y = D D y
202 201 adantr φ y a 1 D | a D ¬ y = D y 1 D y D D y
203 198 202 jca φ y a 1 D | a D ¬ y = D y 1 D y D y D D y
204 192 zred φ y a 1 D | a D ¬ y = D y 1 D y D y
205 158 ad3antrrr φ y a 1 D | a D ¬ y = D y 1 D y D D
206 204 205 ltlend φ y a 1 D | a D ¬ y = D y 1 D y D y < D y D D y
207 203 206 mpbird φ y a 1 D | a D ¬ y = D y 1 D y D y < D
208 6 ad3antrrr φ y a 1 D | a D ¬ y = D y 1 D y D D
209 208 nnzd φ y a 1 D | a D ¬ y = D y 1 D y D D
210 192 209 zltlem1d φ y a 1 D | a D ¬ y = D y 1 D y D y < D y D 1
211 207 210 mpbid φ y a 1 D | a D ¬ y = D y 1 D y D y D 1
212 187 189 192 195 211 elfzd φ y a 1 D | a D ¬ y = D y 1 D y D y 1 D 1
213 simprr φ y a 1 D | a D ¬ y = D y 1 D y D y D
214 182 212 213 elrabd φ y a 1 D | a D ¬ y = D y 1 D y D y a 1 D 1 | a D
215 214 ex φ y a 1 D | a D ¬ y = D y 1 D y D y a 1 D 1 | a D
216 186 215 mpd φ y a 1 D | a D ¬ y = D y a 1 D 1 | a D
217 216 orcd φ y a 1 D | a D ¬ y = D y a 1 D 1 | a D y D
218 181 217 pm2.61dan φ y a 1 D | a D y a 1 D 1 | a D y D
219 218 125 sylibr φ y a 1 D | a D y a 1 D 1 | a D D
220 219 ex φ y a 1 D | a D y a 1 D 1 | a D D
221 173 220 impbid φ y a 1 D 1 | a D D y a 1 D | a D
222 221 eqrdv φ a 1 D 1 | a D D = a 1 D | a D
223 222 sumeq1d φ k a 1 D 1 | a D D ϕ k = k a 1 D | a D ϕ k
224 phisum D k a | a D ϕ k = D
225 6 224 syl φ k a | a D ϕ k = D
226 eqcom od G A = D D = od G A
227 226 imbi2i φ od G A = D φ D = od G A
228 9 227 mpbi φ D = od G A
229 228 oveq1d φ D × ˙ x = od G A × ˙ x
230 229 eqeq1d φ D × ˙ x = 0 G od G A × ˙ x = 0 G
231 230 rabbidv φ x B | D × ˙ x = 0 G = x B | od G A × ˙ x = 0 G
232 231 fveq2d φ x B | D × ˙ x = 0 G = x B | od G A × ˙ x = 0 G
233 1 2 3 4 5 8 unitscyglem1 φ x B | od G A × ˙ x = 0 G = od G A
234 232 233 eqtrd φ x B | D × ˙ x = 0 G = od G A
235 234 9 eqtr2d φ D = x B | D × ˙ x = 0 G
236 1 2 3 4 6 grpods φ k a 1 D | a D x B | od G x = k = x B | D × ˙ x = 0 G
237 235 236 eqtr4d φ D = k a 1 D | a D x B | od G x = k
238 222 eqcomd φ a 1 D | a D = a 1 D 1 | a D D
239 238 sumeq1d φ k a 1 D | a D x B | od G x = k = k a 1 D 1 | a D D x B | od G x = k
240 237 239 eqtrd φ D = k a 1 D 1 | a D D x B | od G x = k
241 225 240 eqtr2d φ k a 1 D 1 | a D D x B | od G x = k = k a | a D ϕ k
242 1zzd φ y a | a D 1
243 156 adantr φ y a | a D D
244 182 elrab y a | a D y y D
245 244 biimpi y a | a D y y D
246 245 adantl φ y a | a D y y D
247 246 simpld φ y a | a D y
248 247 nnzd φ y a | a D y
249 247 nnge1d φ y a | a D 1 y
250 246 simprd φ y a | a D y D
251 6 adantr φ y a | a D D
252 dvdsle y D y D y D
253 248 251 252 syl2anc φ y a | a D y D y D
254 250 253 mpd φ y a | a D y D
255 242 243 248 249 254 elfzd φ y a | a D y 1 D
256 182 255 250 elrabd φ y a | a D y a 1 D | a D
257 256 ex φ y a | a D y a 1 D | a D
258 elfzelz a 1 D a
259 elfzle1 a 1 D 1 a
260 258 259 jca a 1 D a 1 a
261 260 adantr a 1 D a D a 1 a
262 261 adantl φ a 1 D a D a 1 a
263 elnnz1 a a 1 a
264 262 263 sylibr φ a 1 D a D a
265 264 rabss3d φ a 1 D | a D a | a D
266 265 sseld φ y a 1 D | a D y a | a D
267 257 266 impbid φ y a | a D y a 1 D | a D
268 267 eqrdv φ a | a D = a 1 D | a D
269 268 sumeq1d φ k a | a D ϕ k = k a 1 D | a D ϕ k
270 241 269 eqtr2d φ k a 1 D | a D ϕ k = k a 1 D 1 | a D D x B | od G x = k
271 223 270 eqtrd φ k a 1 D 1 | a D D ϕ k = k a 1 D 1 | a D D x B | od G x = k
272 nfv k φ
273 nfcv _ k x B | od G x = D
274 fzfid φ 1 D 1 Fin
275 ssrab2 a 1 D 1 | a D 1 D 1
276 275 a1i φ a 1 D 1 | a D 1 D 1
277 274 276 ssfid φ a 1 D 1 | a D Fin
278 154 elrab D a 1 D 1 | a D D 1 D 1 D D
279 278 biimpi D a 1 D 1 | a D D 1 D 1 D D
280 279 simpld D a 1 D 1 | a D D 1 D 1
281 280 adantl φ D a 1 D 1 | a D D 1 D 1
282 elfzle2 D 1 D 1 D D 1
283 281 282 syl φ D a 1 D 1 | a D D D 1
284 158 ltm1d φ D 1 < D
285 1red φ 1
286 158 285 resubcld φ D 1
287 286 158 ltnled φ D 1 < D ¬ D D 1
288 284 287 mpbid φ ¬ D D 1
289 288 adantr φ D a 1 D 1 | a D ¬ D D 1
290 283 289 pm2.21dd φ D a 1 D 1 | a D ¬ D a 1 D 1 | a D
291 simpr φ ¬ D a 1 D 1 | a D ¬ D a 1 D 1 | a D
292 290 291 pm2.61dan φ ¬ D a 1 D 1 | a D
293 4 adantr φ k a 1 D 1 | a D B Fin
294 ssrab2 x B | od G x = k B
295 294 a1i φ k a 1 D 1 | a D x B | od G x = k B
296 293 295 ssfid φ k a 1 D 1 | a D x B | od G x = k Fin
297 hashcl x B | od G x = k Fin x B | od G x = k 0
298 296 297 syl φ k a 1 D 1 | a D x B | od G x = k 0
299 298 nn0cnd φ k a 1 D 1 | a D x B | od G x = k
300 eqeq2 k = D od G x = k od G x = D
301 300 rabbidv k = D x B | od G x = k = x B | od G x = D
302 301 fveq2d k = D x B | od G x = k = x B | od G x = D
303 ssrab2 x B | od G x = D B
304 303 a1i φ x B | od G x = D B
305 4 304 ssfid φ x B | od G x = D Fin
306 hashcl x B | od G x = D Fin x B | od G x = D 0
307 305 306 syl φ x B | od G x = D 0
308 307 nn0cnd φ x B | od G x = D
309 272 273 277 6 292 299 302 308 fsumsplitsn φ k a 1 D 1 | a D D x B | od G x = k = k a 1 D 1 | a D x B | od G x = k + x B | od G x = D
310 271 309 eqtr2d φ k a 1 D 1 | a D x B | od G x = k + x B | od G x = D = k a 1 D 1 | a D D ϕ k
311 nfcv _ k ϕ D
312 121 299 eqeltrrd φ k a 1 D 1 | a D ϕ k
313 fveq2 k = D ϕ k = ϕ D
314 6 phicld φ ϕ D
315 314 nncnd φ ϕ D
316 272 311 277 6 292 312 313 315 fsumsplitsn φ k a 1 D 1 | a D D ϕ k = k a 1 D 1 | a D ϕ k + ϕ D
317 310 316 eqtrd φ k a 1 D 1 | a D x B | od G x = k + x B | od G x = D = k a 1 D 1 | a D ϕ k + ϕ D
318 124 317 eqtrd φ k a 1 D 1 | a D ϕ k + x B | od G x = D = k a 1 D 1 | a D ϕ k + ϕ D
319 277 312 fsumcl φ k a 1 D 1 | a D ϕ k
320 319 308 315 addcand φ k a 1 D 1 | a D ϕ k + x B | od G x = D = k a 1 D 1 | a D ϕ k + ϕ D x B | od G x = D = ϕ D
321 318 320 mpbid φ x B | od G x = D = ϕ D