Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem1.1 |
|
2 |
|
unitscyglem1.2 |
|
3 |
|
unitscyglem1.3 |
|
4 |
|
unitscyglem1.4 |
|
5 |
|
unitscyglem1.5 |
|
6 |
|
unitscyglem2.1 |
|
7 |
|
unitscyglem2.2 |
|
8 |
|
unitscyglem2.3 |
|
9 |
|
unitscyglem2.4 |
|
10 |
|
unitscyglem2.5 |
|
11 |
|
breq1 |
|
12 |
11
|
elrab |
|
13 |
12
|
biimpi |
|
14 |
13
|
adantl |
|
15 |
14
|
simpld |
|
16 |
15
|
elfzelzd |
|
17 |
6
|
adantr |
|
18 |
17
|
nnzd |
|
19 |
|
hashcl |
|
20 |
4 19
|
syl |
|
21 |
20
|
adantr |
|
22 |
21
|
nn0zd |
|
23 |
14
|
simprd |
|
24 |
7
|
adantr |
|
25 |
16 18 22 23 24
|
dvdstrd |
|
26 |
|
simpl |
|
27 |
12 15
|
sylan2br |
|
28 |
26 27
|
jca |
|
29 |
12 23
|
sylan2br |
|
30 |
28 29
|
jca |
|
31 |
|
fveqeq2 |
|
32 |
3
|
ad4antr |
|
33 |
|
simpr |
|
34 |
33
|
eqcomd |
|
35 |
34
|
oveq1d |
|
36 |
|
simplr |
|
37 |
36
|
nncnd |
|
38 |
|
elfzelz |
|
39 |
38
|
adantl |
|
40 |
39
|
ad3antrrr |
|
41 |
40
|
zcnd |
|
42 |
|
elfzle1 |
|
43 |
42
|
adantl |
|
44 |
39 43
|
jca |
|
45 |
|
elnnz1 |
|
46 |
44 45
|
sylibr |
|
47 |
46
|
adantr |
|
48 |
47
|
ad2antrr |
|
49 |
48
|
nnne0d |
|
50 |
37 41 49
|
divcan4d |
|
51 |
35 50
|
eqtrd |
|
52 |
51 36
|
eqeltrd |
|
53 |
52
|
nnnn0d |
|
54 |
53
|
nn0zd |
|
55 |
8
|
ad4antr |
|
56 |
1 2 32 54 55
|
mulgcld |
|
57 |
6
|
ad2antrr |
|
58 |
57
|
ad2antrr |
|
59 |
58
|
nncnd |
|
60 |
59 41 49
|
divcan1d |
|
61 |
9
|
ad4antr |
|
62 |
61
|
eqcomd |
|
63 |
|
eqid |
|
64 |
1 63 2
|
odmulg |
|
65 |
32 55 54 64
|
syl3anc |
|
66 |
62 65
|
eqtrd |
|
67 |
61
|
oveq2d |
|
68 |
59 41 49
|
divcan2d |
|
69 |
68
|
eqcomd |
|
70 |
69
|
oveq2d |
|
71 |
53 40
|
gcdmultipled |
|
72 |
70 71
|
eqtrd |
|
73 |
67 72
|
eqtrd |
|
74 |
73
|
oveq1d |
|
75 |
66 74
|
eqtrd |
|
76 |
60 75
|
eqtr2d |
|
77 |
1 63 56
|
odcld |
|
78 |
77
|
nn0cnd |
|
79 |
54
|
zcnd |
|
80 |
58
|
nnne0d |
|
81 |
59 41 80 49
|
divne0d |
|
82 |
78 41 79 81
|
mulcand |
|
83 |
76 82
|
mpbid |
|
84 |
31 56 83
|
elrabd |
|
85 |
84
|
ne0d |
|
86 |
|
nndivides |
|
87 |
47 57 86
|
syl2anc |
|
88 |
87
|
biimpd |
|
89 |
88
|
syldbl2 |
|
90 |
85 89
|
r19.29a |
|
91 |
30 90
|
syl |
|
92 |
91
|
ex |
|
93 |
92
|
adantr |
|
94 |
14 93
|
mpd |
|
95 |
25 94
|
jca |
|
96 |
15 42
|
syl |
|
97 |
16 96
|
jca |
|
98 |
97 45
|
sylibr |
|
99 |
98
|
nnred |
|
100 |
17
|
nnred |
|
101 |
|
1red |
|
102 |
100 101
|
resubcld |
|
103 |
|
elfzle2 |
|
104 |
15 103
|
syl |
|
105 |
100
|
ltm1d |
|
106 |
99 102 100 104 105
|
lelttrd |
|
107 |
|
breq1 |
|
108 |
|
breq1 |
|
109 |
|
eqeq2 |
|
110 |
109
|
rabbidv |
|
111 |
110
|
neeq1d |
|
112 |
108 111
|
anbi12d |
|
113 |
110
|
fveq2d |
|
114 |
|
fveq2 |
|
115 |
113 114
|
eqeq12d |
|
116 |
112 115
|
imbi12d |
|
117 |
107 116
|
imbi12d |
|
118 |
10
|
adantr |
|
119 |
117 118 98
|
rspcdva |
|
120 |
106 119
|
mpd |
|
121 |
95 120
|
mpd |
|
122 |
121
|
sumeq2dv |
|
123 |
122
|
eqcomd |
|
124 |
123
|
oveq1d |
|
125 |
|
elun |
|
126 |
125
|
biimpi |
|
127 |
126
|
adantl |
|
128 |
|
1zzd |
|
129 |
6
|
adantr |
|
130 |
129
|
nnzd |
|
131 |
|
elfzelz |
|
132 |
131
|
adantr |
|
133 |
132
|
adantl |
|
134 |
|
elfzle1 |
|
135 |
134
|
adantr |
|
136 |
135
|
adantl |
|
137 |
133
|
zred |
|
138 |
129
|
nnred |
|
139 |
|
1red |
|
140 |
138 139
|
resubcld |
|
141 |
|
elfzle2 |
|
142 |
141
|
adantr |
|
143 |
142
|
adantl |
|
144 |
138
|
ltm1d |
|
145 |
137 140 138 143 144
|
lelttrd |
|
146 |
137 138 145
|
ltled |
|
147 |
128 130 133 136 146
|
elfzd |
|
148 |
147
|
rabss3d |
|
149 |
148
|
sseld |
|
150 |
149
|
imp |
|
151 |
|
elsni |
|
152 |
151
|
adantl |
|
153 |
|
simpr |
|
154 |
|
breq1 |
|
155 |
|
1zzd |
|
156 |
6
|
nnzd |
|
157 |
6
|
nnge1d |
|
158 |
6
|
nnred |
|
159 |
158
|
leidd |
|
160 |
155 156 156 157 159
|
elfzd |
|
161 |
|
iddvds |
|
162 |
156 161
|
syl |
|
163 |
154 160 162
|
elrabd |
|
164 |
163
|
adantr |
|
165 |
153 164
|
eqeltrd |
|
166 |
165
|
ex |
|
167 |
166
|
adantr |
|
168 |
152 167
|
mpd |
|
169 |
150 168
|
jaodan |
|
170 |
169
|
ex |
|
171 |
170
|
adantr |
|
172 |
127 171
|
mpd |
|
173 |
172
|
ex |
|
174 |
|
simpr |
|
175 |
|
eqidd |
|
176 |
6
|
ad2antrr |
|
177 |
|
elsng |
|
178 |
176 177
|
syl |
|
179 |
175 178
|
mpbird |
|
180 |
174 179
|
eqeltrd |
|
181 |
180
|
olcd |
|
182 |
|
breq1 |
|
183 |
182
|
elrab |
|
184 |
183
|
biimpi |
|
185 |
184
|
adantl |
|
186 |
185
|
adantr |
|
187 |
|
1zzd |
|
188 |
156
|
ad3antrrr |
|
189 |
188 187
|
zsubcld |
|
190 |
|
elfzelz |
|
191 |
190
|
adantr |
|
192 |
191
|
adantl |
|
193 |
|
elfzle1 |
|
194 |
193
|
adantr |
|
195 |
194
|
adantl |
|
196 |
|
elfzle2 |
|
197 |
196
|
adantr |
|
198 |
197
|
adantl |
|
199 |
|
neqne |
|
200 |
199
|
adantl |
|
201 |
200
|
necomd |
|
202 |
201
|
adantr |
|
203 |
198 202
|
jca |
|
204 |
192
|
zred |
|
205 |
158
|
ad3antrrr |
|
206 |
204 205
|
ltlend |
|
207 |
203 206
|
mpbird |
|
208 |
6
|
ad3antrrr |
|
209 |
208
|
nnzd |
|
210 |
192 209
|
zltlem1d |
|
211 |
207 210
|
mpbid |
|
212 |
187 189 192 195 211
|
elfzd |
|
213 |
|
simprr |
|
214 |
182 212 213
|
elrabd |
|
215 |
214
|
ex |
|
216 |
186 215
|
mpd |
|
217 |
216
|
orcd |
|
218 |
181 217
|
pm2.61dan |
|
219 |
218 125
|
sylibr |
|
220 |
219
|
ex |
|
221 |
173 220
|
impbid |
|
222 |
221
|
eqrdv |
|
223 |
222
|
sumeq1d |
|
224 |
|
phisum |
|
225 |
6 224
|
syl |
|
226 |
|
eqcom |
|
227 |
226
|
imbi2i |
|
228 |
9 227
|
mpbi |
|
229 |
228
|
oveq1d |
|
230 |
229
|
eqeq1d |
|
231 |
230
|
rabbidv |
|
232 |
231
|
fveq2d |
|
233 |
1 2 3 4 5 8
|
unitscyglem1 |
|
234 |
232 233
|
eqtrd |
|
235 |
234 9
|
eqtr2d |
|
236 |
1 2 3 4 6
|
grpods |
|
237 |
235 236
|
eqtr4d |
|
238 |
222
|
eqcomd |
|
239 |
238
|
sumeq1d |
|
240 |
237 239
|
eqtrd |
|
241 |
225 240
|
eqtr2d |
|
242 |
|
1zzd |
|
243 |
156
|
adantr |
|
244 |
182
|
elrab |
|
245 |
244
|
biimpi |
|
246 |
245
|
adantl |
|
247 |
246
|
simpld |
|
248 |
247
|
nnzd |
|
249 |
247
|
nnge1d |
|
250 |
246
|
simprd |
|
251 |
6
|
adantr |
|
252 |
|
dvdsle |
|
253 |
248 251 252
|
syl2anc |
|
254 |
250 253
|
mpd |
|
255 |
242 243 248 249 254
|
elfzd |
|
256 |
182 255 250
|
elrabd |
|
257 |
256
|
ex |
|
258 |
|
elfzelz |
|
259 |
|
elfzle1 |
|
260 |
258 259
|
jca |
|
261 |
260
|
adantr |
|
262 |
261
|
adantl |
|
263 |
|
elnnz1 |
|
264 |
262 263
|
sylibr |
|
265 |
264
|
rabss3d |
|
266 |
265
|
sseld |
|
267 |
257 266
|
impbid |
|
268 |
267
|
eqrdv |
|
269 |
268
|
sumeq1d |
|
270 |
241 269
|
eqtr2d |
|
271 |
223 270
|
eqtrd |
|
272 |
|
nfv |
|
273 |
|
nfcv |
|
274 |
|
fzfid |
|
275 |
|
ssrab2 |
|
276 |
275
|
a1i |
|
277 |
274 276
|
ssfid |
|
278 |
154
|
elrab |
|
279 |
278
|
biimpi |
|
280 |
279
|
simpld |
|
281 |
280
|
adantl |
|
282 |
|
elfzle2 |
|
283 |
281 282
|
syl |
|
284 |
158
|
ltm1d |
|
285 |
|
1red |
|
286 |
158 285
|
resubcld |
|
287 |
286 158
|
ltnled |
|
288 |
284 287
|
mpbid |
|
289 |
288
|
adantr |
|
290 |
283 289
|
pm2.21dd |
|
291 |
|
simpr |
|
292 |
290 291
|
pm2.61dan |
|
293 |
4
|
adantr |
|
294 |
|
ssrab2 |
|
295 |
294
|
a1i |
|
296 |
293 295
|
ssfid |
|
297 |
|
hashcl |
|
298 |
296 297
|
syl |
|
299 |
298
|
nn0cnd |
|
300 |
|
eqeq2 |
|
301 |
300
|
rabbidv |
|
302 |
301
|
fveq2d |
|
303 |
|
ssrab2 |
|
304 |
303
|
a1i |
|
305 |
4 304
|
ssfid |
|
306 |
|
hashcl |
|
307 |
305 306
|
syl |
|
308 |
307
|
nn0cnd |
|
309 |
272 273 277 6 292 299 302 308
|
fsumsplitsn |
|
310 |
271 309
|
eqtr2d |
|
311 |
|
nfcv |
|
312 |
121 299
|
eqeltrrd |
|
313 |
|
fveq2 |
|
314 |
6
|
phicld |
|
315 |
314
|
nncnd |
|
316 |
272 311 277 6 292 312 313 315
|
fsumsplitsn |
|
317 |
310 316
|
eqtrd |
|
318 |
124 317
|
eqtrd |
|
319 |
277 312
|
fsumcl |
|
320 |
319 308 315
|
addcand |
|
321 |
318 320
|
mpbid |
|