Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem1.1 |
|
2 |
|
unitscyglem1.2 |
|
3 |
|
unitscyglem1.3 |
|
4 |
|
unitscyglem1.4 |
|
5 |
|
unitscyglem1.5 |
|
6 |
|
breq1 |
|
7 |
|
eqeq2 |
|
8 |
7
|
rabbidv |
|
9 |
8
|
neeq1d |
|
10 |
6 9
|
anbi12d |
|
11 |
8
|
fveq2d |
|
12 |
|
fveq2 |
|
13 |
11 12
|
eqeq12d |
|
14 |
10 13
|
imbi12d |
|
15 |
14
|
imbi2d |
|
16 |
|
simplr |
|
17 |
|
simplll |
|
18 |
16 17
|
jca |
|
19 |
|
breq1 |
|
20 |
|
breq1 |
|
21 |
|
eqeq2 |
|
22 |
21
|
rabbidv |
|
23 |
22
|
neeq1d |
|
24 |
20 23
|
anbi12d |
|
25 |
22
|
fveq2d |
|
26 |
|
fveq2 |
|
27 |
25 26
|
eqeq12d |
|
28 |
24 27
|
imbi12d |
|
29 |
28
|
imbi2d |
|
30 |
19 29
|
imbi12d |
|
31 |
|
simpr |
|
32 |
31
|
adantr |
|
33 |
32
|
adantr |
|
34 |
33
|
adantr |
|
35 |
|
simpr |
|
36 |
30 34 35
|
rspcdva |
|
37 |
|
simp-5r |
|
38 |
|
simpr |
|
39 |
|
simplr |
|
40 |
38 39
|
mpd |
|
41 |
37 40
|
mpd |
|
42 |
41
|
ex |
|
43 |
42
|
ex |
|
44 |
36 43
|
mpd |
|
45 |
44
|
ralrimiva |
|
46 |
|
nfv |
|
47 |
|
nfv |
|
48 |
|
breq1 |
|
49 |
|
breq1 |
|
50 |
|
eqeq2 |
|
51 |
50
|
rabbidv |
|
52 |
51
|
neeq1d |
|
53 |
49 52
|
anbi12d |
|
54 |
51
|
fveq2d |
|
55 |
|
fveq2 |
|
56 |
54 55
|
eqeq12d |
|
57 |
53 56
|
imbi12d |
|
58 |
48 57
|
imbi12d |
|
59 |
46 47 58
|
cbvralw |
|
60 |
59
|
biimpi |
|
61 |
45 60
|
syl |
|
62 |
18 61
|
jca |
|
63 |
|
simprl |
|
64 |
62 63
|
jca |
|
65 |
|
simprr |
|
66 |
64 65
|
jca |
|
67 |
|
rabn0 |
|
68 |
67
|
biimpi |
|
69 |
68
|
adantl |
|
70 |
|
simp-4l |
|
71 |
|
simp-4r |
|
72 |
|
simplr |
|
73 |
70 71 72
|
jca31 |
|
74 |
|
simpr |
|
75 |
73 74
|
jca |
|
76 |
|
nfcv |
|
77 |
|
nfcv |
|
78 |
|
nfv |
|
79 |
|
nfv |
|
80 |
|
fveqeq2 |
|
81 |
76 77 78 79 80
|
cbvrabw |
|
82 |
81
|
a1i |
|
83 |
82
|
fveq2d |
|
84 |
3
|
ad5antr |
|
85 |
4
|
ad5antr |
|
86 |
|
nfv |
|
87 |
|
nfv |
|
88 |
|
oveq2 |
|
89 |
88
|
eqeq1d |
|
90 |
76 77 86 87 89
|
cbvrabw |
|
91 |
90
|
a1i |
|
92 |
91
|
fveq2d |
|
93 |
92
|
breq1d |
|
94 |
93
|
ralbidv |
|
95 |
94
|
biimpd |
|
96 |
5 95
|
mpd |
|
97 |
96
|
ad5antr |
|
98 |
|
simp-5r |
|
99 |
|
simpllr |
|
100 |
|
simplr |
|
101 |
|
simpr |
|
102 |
|
nfv |
|
103 |
|
nfv |
|
104 |
|
fveqeq2 |
|
105 |
77 76 102 103 104
|
cbvrabw |
|
106 |
|
eqcom |
|
107 |
105 106
|
mpbi |
|
108 |
107
|
neeq1i |
|
109 |
108
|
anbi2i |
|
110 |
107
|
fveq2i |
|
111 |
110
|
eqeq1i |
|
112 |
109 111
|
imbi12i |
|
113 |
112
|
imbi2i |
|
114 |
113
|
biimpi |
|
115 |
114
|
ralimi |
|
116 |
115
|
adantl |
|
117 |
116
|
adantr |
|
118 |
117
|
adantr |
|
119 |
118
|
adantr |
|
120 |
1 2 84 85 97 98 99 100 101 119
|
unitscyglem2 |
|
121 |
83 120
|
eqtrd |
|
122 |
75 121
|
syl |
|
123 |
|
nfv |
|
124 |
|
nfv |
|
125 |
|
fveqeq2 |
|
126 |
123 124 125
|
cbvrexw |
|
127 |
126
|
biimpi |
|
128 |
127
|
adantl |
|
129 |
122 128
|
r19.29a |
|
130 |
129
|
ex |
|
131 |
130
|
adantr |
|
132 |
69 131
|
mpd |
|
133 |
66 132
|
syl |
|
134 |
133
|
ex |
|
135 |
134
|
ex |
|
136 |
135
|
ex |
|
137 |
15 136
|
indstr |
|
138 |
137
|
com12 |
|
139 |
138
|
imp |
|
140 |
139
|
ralrimiva |
|