Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem1.1 |
|
2 |
|
unitscyglem1.2 |
|
3 |
|
unitscyglem1.3 |
|
4 |
|
unitscyglem1.4 |
|
5 |
|
unitscyglem1.5 |
|
6 |
|
unitscyglem4.1 |
|
7 |
|
unitscyglem4.2 |
|
8 |
|
nfcv |
|
9 |
|
nfcv |
|
10 |
|
nfv |
|
11 |
|
nfv |
|
12 |
|
fveqeq2 |
|
13 |
8 9 10 11 12
|
cbvrabw |
|
14 |
13
|
fveq2i |
|
15 |
14
|
a1i |
|
16 |
7
|
adantr |
|
17 |
16
|
ex |
|
18 |
17
|
ancrd |
|
19 |
18
|
imdistani |
|
20 |
|
breq1 |
|
21 |
|
eqeq2 |
|
22 |
21
|
rabbidv |
|
23 |
22
|
neeq1d |
|
24 |
20 23
|
anbi12d |
|
25 |
22
|
fveq2d |
|
26 |
|
fveq2 |
|
27 |
25 26
|
eqeq12d |
|
28 |
24 27
|
imbi12d |
|
29 |
1 2 3 4 5
|
unitscyglem3 |
|
30 |
28 29 6
|
rspcdva |
|
31 |
30
|
imp |
|
32 |
19 31
|
syl |
|
33 |
15 32
|
eqtrd |
|
34 |
|
id |
|
35 |
34
|
necon1bi |
|
36 |
35
|
adantl |
|
37 |
3
|
adantr |
|
38 |
4
|
adantr |
|
39 |
1 37 38
|
hashfingrpnn |
|
40 |
1 2 37 38 39
|
grpods |
|
41 |
|
simpr |
|
42 |
41
|
eqcomd |
|
43 |
42
|
oveq1d |
|
44 |
3
|
adantr |
|
45 |
44
|
adantr |
|
46 |
|
simpr |
|
47 |
|
eqid |
|
48 |
|
simpr |
|
49 |
1 47 48
|
odcld |
|
50 |
49
|
adantr |
|
51 |
50
|
nn0zd |
|
52 |
|
simplr |
|
53 |
46 51 52
|
3jca |
|
54 |
1 2
|
mulgass |
|
55 |
45 53 54
|
syl2anc |
|
56 |
|
eqid |
|
57 |
1 47 2 56
|
odid |
|
58 |
52 57
|
syl |
|
59 |
58
|
oveq2d |
|
60 |
1 2 56
|
mulgz |
|
61 |
44 60
|
sylan |
|
62 |
59 61
|
eqtrd |
|
63 |
55 62
|
eqtrd |
|
64 |
63
|
adantr |
|
65 |
43 64
|
eqtrd |
|
66 |
4
|
adantr |
|
67 |
1 47
|
oddvds2 |
|
68 |
44 66 48 67
|
syl3anc |
|
69 |
49
|
nn0zd |
|
70 |
|
hashcl |
|
71 |
66 70
|
syl |
|
72 |
71
|
nn0zd |
|
73 |
|
divides |
|
74 |
69 72 73
|
syl2anc |
|
75 |
68 74
|
mpbid |
|
76 |
65 75
|
r19.29a |
|
77 |
76
|
rabeqcda |
|
78 |
77
|
adantr |
|
79 |
78
|
fveq2d |
|
80 |
40 79
|
eqtr2d |
|
81 |
|
nfv |
|
82 |
|
nfcv |
|
83 |
|
fzfid |
|
84 |
|
ssrab2 |
|
85 |
84
|
a1i |
|
86 |
83 85
|
ssfid |
|
87 |
38
|
adantr |
|
88 |
|
ssrab2 |
|
89 |
88
|
a1i |
|
90 |
87 89
|
ssfid |
|
91 |
|
hashcl |
|
92 |
90 91
|
syl |
|
93 |
92
|
nn0cnd |
|
94 |
|
breq1 |
|
95 |
|
1zzd |
|
96 |
39
|
nnzd |
|
97 |
39
|
nnge1d |
|
98 |
39
|
nnred |
|
99 |
98
|
leidd |
|
100 |
95 96 96 97 99
|
elfzd |
|
101 |
|
iddvds |
|
102 |
96 101
|
syl |
|
103 |
94 100 102
|
elrabd |
|
104 |
|
eqeq2 |
|
105 |
104
|
rabbidv |
|
106 |
105
|
fveq2d |
|
107 |
81 82 86 93 103 106
|
fsumsplit1 |
|
108 |
|
ssrab2 |
|
109 |
108
|
a1i |
|
110 |
38 109
|
ssfid |
|
111 |
|
hashcl |
|
112 |
110 111
|
syl |
|
113 |
112
|
nn0red |
|
114 |
|
diffi |
|
115 |
86 114
|
syl |
|
116 |
38
|
adantr |
|
117 |
88
|
a1i |
|
118 |
116 117
|
ssfid |
|
119 |
118 91
|
syl |
|
120 |
115 119
|
fsumnn0cl |
|
121 |
120
|
nn0red |
|
122 |
39
|
phicld |
|
123 |
122
|
nnred |
|
124 |
|
eldifi |
|
125 |
|
breq1 |
|
126 |
125
|
elrab |
|
127 |
126
|
biimpi |
|
128 |
|
elfzelz |
|
129 |
|
elfzle1 |
|
130 |
128 129
|
jca |
|
131 |
130
|
adantr |
|
132 |
127 131
|
syl |
|
133 |
124 132
|
syl |
|
134 |
133
|
adantl |
|
135 |
|
elnnz1 |
|
136 |
134 135
|
sylibr |
|
137 |
|
phicl |
|
138 |
136 137
|
syl |
|
139 |
138
|
nnred |
|
140 |
115 139
|
fsumrecl |
|
141 |
|
simplll |
|
142 |
|
simplr |
|
143 |
141 142
|
jca |
|
144 |
|
simpr |
|
145 |
143 144
|
jca |
|
146 |
|
fveqeq2 |
|
147 |
3
|
ad2antrr |
|
148 |
7
|
ad2antrr |
|
149 |
6
|
ad2antrr |
|
150 |
149
|
nnzd |
|
151 |
149
|
nnne0d |
|
152 |
4
|
ad2antrr |
|
153 |
152 70
|
syl |
|
154 |
153
|
nn0zd |
|
155 |
|
dvdsval2 |
|
156 |
150 151 154 155
|
syl3anc |
|
157 |
148 156
|
mpbid |
|
158 |
|
simplr |
|
159 |
1 2 147 157 158
|
mulgcld |
|
160 |
153
|
nn0cnd |
|
161 |
6
|
nncnd |
|
162 |
161
|
ad2antrr |
|
163 |
1 147 152
|
hashfingrpnn |
|
164 |
163
|
nnne0d |
|
165 |
160 160 162 164 151
|
divdiv2d |
|
166 |
162 160 164
|
divcan3d |
|
167 |
165 166
|
eqtr2d |
|
168 |
|
simpr |
|
169 |
168
|
oveq2d |
|
170 |
4 70
|
syl |
|
171 |
170
|
nn0cnd |
|
172 |
6
|
nnne0d |
|
173 |
171 161 172
|
divcan2d |
|
174 |
173
|
eqcomd |
|
175 |
174
|
adantr |
|
176 |
175
|
adantr |
|
177 |
176
|
oveq2d |
|
178 |
|
nndivdvds |
|
179 |
163 149 178
|
syl2anc |
|
180 |
148 179
|
mpbid |
|
181 |
180
|
nnnn0d |
|
182 |
181 150
|
gcdmultipled |
|
183 |
177 182
|
eqtrd |
|
184 |
169 183
|
eqtrd |
|
185 |
184
|
eqcomd |
|
186 |
185
|
oveq2d |
|
187 |
167 186
|
eqtrd |
|
188 |
168
|
eqcomd |
|
189 |
1 47 2
|
odmulg |
|
190 |
147 158 157 189
|
syl3anc |
|
191 |
188 190
|
eqtrd |
|
192 |
191
|
eqcomd |
|
193 |
157
|
zcnd |
|
194 |
184 193
|
eqeltrd |
|
195 |
1 47 159
|
odcld |
|
196 |
195
|
nn0cnd |
|
197 |
168 154
|
eqeltrd |
|
198 |
168 164
|
eqnetrd |
|
199 |
157 197 198
|
3jca |
|
200 |
|
gcd2n0cl |
|
201 |
199 200
|
syl |
|
202 |
201
|
nnne0d |
|
203 |
160 194 196 202
|
divmuld |
|
204 |
192 203
|
mpbird |
|
205 |
187 204
|
eqtr2d |
|
206 |
146 159 205
|
elrabd |
|
207 |
|
ne0i |
|
208 |
206 207
|
syl |
|
209 |
145 208
|
syl |
|
210 |
|
rabn0 |
|
211 |
|
nfv |
|
212 |
|
nfv |
|
213 |
|
fveqeq2 |
|
214 |
211 212 213
|
cbvrexw |
|
215 |
210 214
|
bitri |
|
216 |
215
|
biimpi |
|
217 |
216
|
adantl |
|
218 |
209 217
|
r19.29a |
|
219 |
218
|
ex |
|
220 |
219
|
necon4d |
|
221 |
220
|
imp |
|
222 |
221
|
fveq2d |
|
223 |
|
hash0 |
|
224 |
223
|
a1i |
|
225 |
222 224
|
eqtrd |
|
226 |
122
|
nngt0d |
|
227 |
225 226
|
eqbrtrd |
|
228 |
|
eldif |
|
229 |
228
|
biimpi |
|
230 |
229
|
adantl |
|
231 |
|
breq1 |
|
232 |
231
|
elrab |
|
233 |
232
|
biimpi |
|
234 |
233
|
adantr |
|
235 |
|
velsn |
|
236 |
235
|
bicomi |
|
237 |
236
|
biimpi |
|
238 |
237
|
necon3bi |
|
239 |
238
|
adantl |
|
240 |
234 239
|
jca |
|
241 |
240
|
adantl |
|
242 |
|
1zzd |
|
243 |
4
|
adantr |
|
244 |
243 70
|
syl |
|
245 |
244
|
nn0zd |
|
246 |
245 242
|
zsubcld |
|
247 |
|
elfzelz |
|
248 |
247
|
adantr |
|
249 |
248
|
adantr |
|
250 |
249
|
adantl |
|
251 |
|
elfzle1 |
|
252 |
251
|
adantr |
|
253 |
252
|
adantr |
|
254 |
253
|
adantl |
|
255 |
|
elfzle2 |
|
256 |
255
|
adantr |
|
257 |
256
|
adantr |
|
258 |
257
|
adantl |
|
259 |
|
simprr |
|
260 |
259
|
necomd |
|
261 |
258 260
|
jca |
|
262 |
250
|
zred |
|
263 |
244
|
nn0red |
|
264 |
262 263
|
ltlend |
|
265 |
261 264
|
mpbird |
|
266 |
250 245
|
zltlem1d |
|
267 |
265 266
|
mpbid |
|
268 |
242 246 250 254 267
|
elfzd |
|
269 |
|
simprlr |
|
270 |
231 268 269
|
elrabd |
|
271 |
270
|
ex |
|
272 |
271
|
adantr |
|
273 |
241 272
|
mpd |
|
274 |
273
|
ex |
|
275 |
274
|
adantr |
|
276 |
230 275
|
mpd |
|
277 |
276
|
ex |
|
278 |
277
|
ssrdv |
|
279 |
|
1zzd |
|
280 |
170
|
nn0zd |
|
281 |
280
|
adantr |
|
282 |
|
elfzelz |
|
283 |
282
|
adantl |
|
284 |
|
elfzle1 |
|
285 |
284
|
adantl |
|
286 |
283
|
zred |
|
287 |
281
|
zred |
|
288 |
|
1red |
|
289 |
287 288
|
resubcld |
|
290 |
|
elfzle2 |
|
291 |
290
|
adantl |
|
292 |
287
|
lem1d |
|
293 |
286 289 287 291 292
|
letrd |
|
294 |
279 281 283 285 293
|
elfzd |
|
295 |
294
|
ex |
|
296 |
295
|
ssrdv |
|
297 |
|
rabss2 |
|
298 |
296 297
|
syl |
|
299 |
298
|
sseld |
|
300 |
299
|
imp |
|
301 |
170
|
ad2antrr |
|
302 |
301
|
nn0red |
|
303 |
302
|
leidd |
|
304 |
|
simpr |
|
305 |
304
|
eqcomd |
|
306 |
231
|
elrab |
|
307 |
306
|
biimpi |
|
308 |
307
|
adantl |
|
309 |
291
|
adantrr |
|
310 |
309
|
ex |
|
311 |
310
|
adantr |
|
312 |
308 311
|
mpd |
|
313 |
300 233 248
|
3syl |
|
314 |
280
|
adantr |
|
315 |
313 314
|
zltlem1d |
|
316 |
312 315
|
mpbird |
|
317 |
316
|
adantr |
|
318 |
305 317
|
eqbrtrd |
|
319 |
302 302
|
ltnled |
|
320 |
318 319
|
mpbid |
|
321 |
303 320
|
pm2.21dd |
|
322 |
|
simpr |
|
323 |
321 322
|
pm2.61dane |
|
324 |
300 323
|
eldifsnd |
|
325 |
324
|
ex |
|
326 |
325
|
ssrdv |
|
327 |
278 326
|
eqssd |
|
328 |
327
|
sumeq1d |
|
329 |
|
fzfid |
|
330 |
|
ssrab2 |
|
331 |
330
|
a1i |
|
332 |
329 331
|
ssfid |
|
333 |
4
|
adantr |
|
334 |
88
|
a1i |
|
335 |
333 334
|
ssfid |
|
336 |
335 91
|
syl |
|
337 |
336
|
nn0red |
|
338 |
125
|
elrab |
|
339 |
338
|
biimpi |
|
340 |
339
|
adantl |
|
341 |
|
elfzelz |
|
342 |
|
elfzle1 |
|
343 |
341 342
|
jca |
|
344 |
343
|
adantr |
|
345 |
344
|
adantl |
|
346 |
345 135
|
sylibr |
|
347 |
346
|
ex |
|
348 |
347
|
adantr |
|
349 |
340 348
|
mpd |
|
350 |
349
|
phicld |
|
351 |
350
|
nnred |
|
352 |
|
simpll |
|
353 |
338
|
biimpri |
|
354 |
353
|
adantl |
|
355 |
354
|
adantr |
|
356 |
352 355
|
jca |
|
357 |
356 337
|
syl |
|
358 |
|
simpr |
|
359 |
356 358
|
jca |
|
360 |
340
|
simprd |
|
361 |
360
|
adantr |
|
362 |
|
simpr |
|
363 |
361 362
|
jca |
|
364 |
|
breq1 |
|
365 |
|
eqeq2 |
|
366 |
365
|
rabbidv |
|
367 |
366
|
neeq1d |
|
368 |
364 367
|
anbi12d |
|
369 |
366
|
fveq2d |
|
370 |
|
fveq2 |
|
371 |
369 370
|
eqeq12d |
|
372 |
368 371
|
imbi12d |
|
373 |
29
|
adantr |
|
374 |
372 373 349
|
rspcdva |
|
375 |
374
|
adantr |
|
376 |
363 375
|
mpd |
|
377 |
359 376
|
syl |
|
378 |
357 377
|
eqled |
|
379 |
|
id |
|
380 |
379
|
necon1bi |
|
381 |
380
|
adantl |
|
382 |
381
|
fveq2d |
|
383 |
223
|
a1i |
|
384 |
382 383
|
eqtrd |
|
385 |
346
|
adantr |
|
386 |
385
|
phicld |
|
387 |
386
|
nnnn0d |
|
388 |
387
|
nn0ge0d |
|
389 |
384 388
|
eqbrtrd |
|
390 |
378 389
|
pm2.61dan |
|
391 |
390
|
ex |
|
392 |
391
|
adantr |
|
393 |
340 392
|
mpd |
|
394 |
332 337 351 393
|
fsumle |
|
395 |
327
|
sumeq1d |
|
396 |
395
|
eqcomd |
|
397 |
394 396
|
breqtrd |
|
398 |
328 397
|
eqbrtrd |
|
399 |
398
|
adantr |
|
400 |
113 121 123 140 227 399
|
ltleaddd |
|
401 |
|
nfcv |
|
402 |
|
simpll |
|
403 |
127
|
adantl |
|
404 |
402 403
|
jca |
|
405 |
131
|
adantl |
|
406 |
405
|
adantl |
|
407 |
406 135
|
sylibr |
|
408 |
407
|
ex |
|
409 |
404 408
|
mpd |
|
410 |
409
|
phicld |
|
411 |
410
|
nncnd |
|
412 |
|
fveq2 |
|
413 |
81 401 86 411 103 412
|
fsumsplit1 |
|
414 |
400 413
|
breqtrrd |
|
415 |
107 414
|
eqbrtrd |
|
416 |
|
elfzelz |
|
417 |
|
elfzle1 |
|
418 |
416 417
|
jca |
|
419 |
418
|
adantr |
|
420 |
419
|
adantl |
|
421 |
|
elnnz1 |
|
422 |
420 421
|
sylibr |
|
423 |
422
|
rabss3d |
|
424 |
|
simpl |
|
425 |
|
simprl |
|
426 |
424 425
|
jca |
|
427 |
|
simprr |
|
428 |
426 427
|
jca |
|
429 |
|
1zzd |
|
430 |
280
|
adantr |
|
431 |
430
|
adantr |
|
432 |
425
|
anassrs |
|
433 |
432
|
nnzd |
|
434 |
432
|
nnge1d |
|
435 |
|
nnz |
|
436 |
435
|
adantl |
|
437 |
1 3 4
|
hashfingrpnn |
|
438 |
437
|
adantr |
|
439 |
|
dvdsle |
|
440 |
436 438 439
|
syl2anc |
|
441 |
440
|
imp |
|
442 |
429 431 433 434 441
|
elfzd |
|
443 |
428 442
|
syl |
|
444 |
443
|
rabss3d |
|
445 |
423 444
|
eqssd |
|
446 |
445
|
adantr |
|
447 |
446
|
sumeq1d |
|
448 |
415 447
|
breqtrd |
|
449 |
|
phisum |
|
450 |
39 449
|
syl |
|
451 |
448 450
|
breqtrd |
|
452 |
80 451
|
eqbrtrd |
|
453 |
170
|
adantr |
|
454 |
453
|
nn0red |
|
455 |
454
|
ltnrd |
|
456 |
452 455
|
pm2.21dd |
|
457 |
456
|
ex |
|
458 |
457
|
adantr |
|
459 |
36 458
|
mpd |
|
460 |
33 459
|
pm2.61dan |
|