Metamath Proof Explorer


Theorem unitscyglem5

Description: Lemma for unitscyg (Contributed by metakunt, 9-Aug-2025)

Ref Expression
Hypotheses unitscyglem5.1 G = mulGrp R 𝑠 Unit R
unitscyglem5.2 φ R IDomn
unitscyglem5.3 φ Base R Fin
unitscyglem5.4 φ D
unitscyglem5.5 φ D Base G
Assertion unitscyglem5 φ mulGrp R PrimRoots D

Proof

Step Hyp Ref Expression
1 unitscyglem5.1 G = mulGrp R 𝑠 Unit R
2 unitscyglem5.2 φ R IDomn
3 unitscyglem5.3 φ Base R Fin
4 unitscyglem5.4 φ D
5 unitscyglem5.5 φ D Base G
6 4 phicld φ ϕ D
7 eqid Base G = Base G
8 eqid G = G
9 2 idomringd φ R Ring
10 eqid Unit R = Unit R
11 10 1 unitgrp R Ring G Grp
12 9 11 syl φ G Grp
13 eqid Base mulGrp R = Base mulGrp R
14 1 13 ressbasss Base G Base mulGrp R
15 14 a1i φ Base G Base mulGrp R
16 eqid mulGrp R = mulGrp R
17 eqid Base R = Base R
18 16 17 mgpbas Base R = Base mulGrp R
19 18 a1i φ Base R = Base mulGrp R
20 19 eqimsscd φ Base mulGrp R Base R
21 15 20 sstrd φ Base G Base R
22 3 21 ssfid φ Base G Fin
23 18 eqcomi Base mulGrp R = Base R
24 23 10 unitss Unit R Base mulGrp R
25 24 a1i φ Unit R Base mulGrp R
26 25 adantr φ y Unit R Base mulGrp R
27 26 adantr φ y z Base G Unit R Base mulGrp R
28 1 13 ressbasssg Base G Unit R Base mulGrp R
29 28 a1i φ Base G Unit R Base mulGrp R
30 inss1 Unit R Base mulGrp R Unit R
31 30 a1i φ Unit R Base mulGrp R Unit R
32 29 31 sstrd φ Base G Unit R
33 32 adantr φ y Base G Unit R
34 33 sseld φ y z Base G z Unit R
35 34 imp φ y z Base G z Unit R
36 simpr φ y y
37 36 adantr φ y z Base G y
38 1 27 35 37 ressmulgnnd φ y z Base G y G z = y mulGrp R z
39 38 eqeq1d φ y z Base G y G z = 0 G y mulGrp R z = 0 G
40 39 rabbidva φ y z Base G | y G z = 0 G = z Base G | y mulGrp R z = 0 G
41 40 fveq2d φ y z Base G | y G z = 0 G = z Base G | y mulGrp R z = 0 G
42 fvex Base G V
43 42 rabex z Base G | y G z = 0 G V
44 43 a1i φ y z Base G | y G z = 0 G V
45 hashxrcl z Base G | y G z = 0 G V z Base G | y G z = 0 G *
46 44 45 syl φ y z Base G | y G z = 0 G *
47 41 46 eqeltrrd φ y z Base G | y mulGrp R z = 0 G *
48 fvex Base R V
49 48 rabex z Base R | y mulGrp R z = 0 G V
50 49 a1i φ y z Base R | y mulGrp R z = 0 G V
51 hashxrcl z Base R | y mulGrp R z = 0 G V z Base R | y mulGrp R z = 0 G *
52 50 51 syl φ y z Base R | y mulGrp R z = 0 G *
53 nnre y y
54 53 adantl φ y y
55 54 rexrd φ y y *
56 simprl φ y z Base G y mulGrp R z = 0 G z Base G
57 21 ad2antrr φ y z Base G y mulGrp R z = 0 G Base G Base R
58 57 sseld φ y z Base G y mulGrp R z = 0 G z Base G z Base R
59 56 58 mpd φ y z Base G y mulGrp R z = 0 G z Base R
60 59 rabss3d φ y z Base G | y mulGrp R z = 0 G z Base R | y mulGrp R z = 0 G
61 50 60 jca φ y z Base R | y mulGrp R z = 0 G V z Base G | y mulGrp R z = 0 G z Base R | y mulGrp R z = 0 G
62 hashss z Base R | y mulGrp R z = 0 G V z Base G | y mulGrp R z = 0 G z Base R | y mulGrp R z = 0 G z Base G | y mulGrp R z = 0 G z Base R | y mulGrp R z = 0 G
63 61 62 syl φ y z Base G | y mulGrp R z = 0 G z Base R | y mulGrp R z = 0 G
64 2 adantr φ y R IDomn
65 eqid 1 R = 1 R
66 10 1 65 unitgrpid R Ring 1 R = 0 G
67 9 66 syl φ 1 R = 0 G
68 67 eqcomd φ 0 G = 1 R
69 17 65 ringidcl R Ring 1 R Base R
70 9 69 syl φ 1 R Base R
71 68 70 eqeltrd φ 0 G Base R
72 71 adantr φ y 0 G Base R
73 eqid mulGrp R = mulGrp R
74 17 73 idomrootle R IDomn 0 G Base R y z Base R | y mulGrp R z = 0 G y
75 64 72 36 74 syl3anc φ y z Base R | y mulGrp R z = 0 G y
76 47 52 55 63 75 xrletrd φ y z Base G | y mulGrp R z = 0 G y
77 41 76 eqbrtrd φ y z Base G | y G z = 0 G y
78 77 ralrimiva φ y z Base G | y G z = 0 G y
79 7 8 12 22 78 4 5 unitscyglem4 φ w Base G | od G w = D = ϕ D
80 79 eleq1d φ w Base G | od G w = D ϕ D
81 6 80 mpbird φ w Base G | od G w = D
82 81 nngt0d φ 0 < w Base G | od G w = D
83 42 rabex w Base G | od G w = D V
84 83 a1i φ w Base G | od G w = D V
85 hashneq0 w Base G | od G w = D V 0 < w Base G | od G w = D w Base G | od G w = D
86 84 85 syl φ 0 < w Base G | od G w = D w Base G | od G w = D
87 82 86 mpbid φ w Base G | od G w = D
88 n0 w Base G | od G w = D m m w Base G | od G w = D
89 87 88 sylib φ m m w Base G | od G w = D
90 nfv m φ
91 fveqeq2 w = m od G w = D od G m = D
92 91 elrab m w Base G | od G w = D m Base G od G m = D
93 92 biimpi m w Base G | od G w = D m Base G od G m = D
94 93 adantl φ m w Base G | od G w = D m Base G od G m = D
95 simpll φ m w Base G | od G w = D m Base G od G m = D φ
96 simprl φ m w Base G | od G w = D m Base G od G m = D m Base G
97 simprr φ m w Base G | od G w = D m Base G od G m = D od G m = D
98 95 96 97 jca31 φ m w Base G | od G w = D m Base G od G m = D φ m Base G od G m = D
99 2 idomcringd φ R CRing
100 16 crngmgp R CRing mulGrp R CMnd
101 99 100 syl φ mulGrp R CMnd
102 101 ad2antrr φ m Base G od G m = D mulGrp R CMnd
103 4 ad2antrr φ m Base G od G m = D D
104 15 sselda φ m Base G m Base mulGrp R
105 104 adantr φ m Base G od G m = D m Base mulGrp R
106 9 ad2antrr φ m Base G od G m = D R Ring
107 10 16 unitsubm R Ring Unit R SubMnd mulGrp R
108 106 107 syl φ m Base G od G m = D Unit R SubMnd mulGrp R
109 105 23 eleqtrdi φ m Base G od G m = D m Base R
110 102 cmnmndd φ m Base G od G m = D mulGrp R Mnd
111 4 nnzd φ D
112 1zzd φ 1
113 111 112 zsubcld φ D 1
114 1cnd φ 1
115 114 addridd φ 1 + 0 = 1
116 4 nnge1d φ 1 D
117 115 116 eqbrtrd φ 1 + 0 D
118 1red φ 1
119 0red φ 0
120 4 nnred φ D
121 118 119 120 leaddsub2d φ 1 + 0 D 0 D 1
122 117 121 mpbid φ 0 D 1
123 113 122 jca φ D 1 0 D 1
124 elnn0z D 1 0 D 1 0 D 1
125 123 124 sylibr φ D 1 0
126 125 adantr φ m Base G D 1 0
127 126 adantr φ m Base G od G m = D D 1 0
128 18 73 110 127 109 mulgnn0cld φ m Base G od G m = D D 1 mulGrp R m Base R
129 simpr φ m Base G od G m = D o = D 1 mulGrp R m o = D 1 mulGrp R m
130 129 oveq1d φ m Base G od G m = D o = D 1 mulGrp R m o R m = D 1 mulGrp R m R m
131 130 eqeq1d φ m Base G od G m = D o = D 1 mulGrp R m o R m = 1 R D 1 mulGrp R m R m = 1 R
132 eqid R = R
133 16 132 mgpplusg R = + mulGrp R
134 133 a1i φ m Base G od G m = D R = + mulGrp R
135 134 oveqd φ m Base G od G m = D D 1 mulGrp R m R m = D 1 mulGrp R m + mulGrp R m
136 103 nncnd φ m Base G od G m = D D
137 1cnd φ m Base G od G m = D 1
138 136 137 npcand φ m Base G od G m = D D - 1 + 1 = D
139 138 eqcomd φ m Base G od G m = D D = D - 1 + 1
140 139 oveq1d φ m Base G od G m = D D mulGrp R m = D - 1 + 1 mulGrp R m
141 eqid + mulGrp R = + mulGrp R
142 13 73 141 mulgnn0p1 mulGrp R Mnd D 1 0 m Base mulGrp R D - 1 + 1 mulGrp R m = D 1 mulGrp R m + mulGrp R m
143 110 127 105 142 syl3anc φ m Base G od G m = D D - 1 + 1 mulGrp R m = D 1 mulGrp R m + mulGrp R m
144 140 143 eqtr2d φ m Base G od G m = D D 1 mulGrp R m + mulGrp R m = D mulGrp R m
145 16 65 ringidval 1 R = 0 mulGrp R
146 145 a1i φ 1 R = 0 mulGrp R
147 146 eqcomd φ 0 mulGrp R = 1 R
148 10 65 1unit R Ring 1 R Unit R
149 9 148 syl φ 1 R Unit R
150 147 149 eqeltrd φ 0 mulGrp R Unit R
151 150 adantr φ m Base G 0 mulGrp R Unit R
152 151 adantr φ m Base G od G m = D 0 mulGrp R Unit R
153 24 a1i φ m Base G od G m = D Unit R Base mulGrp R
154 eqid 0 mulGrp R = 0 mulGrp R
155 1 13 154 ress0g mulGrp R Mnd 0 mulGrp R Unit R Unit R Base mulGrp R 0 mulGrp R = 0 G
156 110 152 153 155 syl3anc φ m Base G od G m = D 0 mulGrp R = 0 G
157 simpr φ m Base G od G m = D od G m = D
158 157 eqcomd φ m Base G od G m = D D = od G m
159 158 oveq1d φ m Base G od G m = D D G m = od G m G m
160 eqid od G = od G
161 eqid 0 G = 0 G
162 7 160 8 161 odid m Base G od G m G m = 0 G
163 162 ad2antlr φ m Base G od G m = D od G m G m = 0 G
164 159 163 eqtrd φ m Base G od G m = D D G m = 0 G
165 164 eqcomd φ m Base G od G m = D 0 G = D G m
166 156 165 eqtrd φ m Base G od G m = D 0 mulGrp R = D G m
167 32 sselda φ m Base G m Unit R
168 167 adantr φ m Base G od G m = D m Unit R
169 1 153 168 103 ressmulgnnd φ m Base G od G m = D D G m = D mulGrp R m
170 166 169 eqtr2d φ m Base G od G m = D D mulGrp R m = 0 mulGrp R
171 144 170 eqtrd φ m Base G od G m = D D 1 mulGrp R m + mulGrp R m = 0 mulGrp R
172 145 a1i φ m Base G od G m = D 1 R = 0 mulGrp R
173 172 eqcomd φ m Base G od G m = D 0 mulGrp R = 1 R
174 171 173 eqtrd φ m Base G od G m = D D 1 mulGrp R m + mulGrp R m = 1 R
175 135 174 eqtrd φ m Base G od G m = D D 1 mulGrp R m R m = 1 R
176 128 131 175 rspcedvd φ m Base G od G m = D o Base R o R m = 1 R
177 109 176 jca φ m Base G od G m = D m Base R o Base R o R m = 1 R
178 eqid r R = r R
179 17 178 132 dvdsr m r R 1 R m Base R o Base R o R m = 1 R
180 177 179 sylibr φ m Base G od G m = D m r R 1 R
181 99 adantr φ m Base G R CRing
182 181 adantr φ m Base G od G m = D R CRing
183 10 65 178 crngunit R CRing m Unit R m r R 1 R
184 182 183 syl φ m Base G od G m = D m Unit R m r R 1 R
185 180 184 mpbird φ m Base G od G m = D m Unit R
186 eqid od mulGrp R = od mulGrp R
187 1 186 160 submod Unit R SubMnd mulGrp R m Unit R od mulGrp R m = od G m
188 108 185 187 syl2anc φ m Base G od G m = D od mulGrp R m = od G m
189 188 157 eqtrd φ m Base G od G m = D od mulGrp R m = D
190 102 103 105 189 isprimroot2 φ m Base G od G m = D m mulGrp R PrimRoots D
191 98 190 syl φ m w Base G | od G w = D m Base G od G m = D m mulGrp R PrimRoots D
192 94 191 mpdan φ m w Base G | od G w = D m mulGrp R PrimRoots D
193 192 ex φ m w Base G | od G w = D m mulGrp R PrimRoots D
194 90 193 eximd φ m m w Base G | od G w = D m m mulGrp R PrimRoots D
195 89 194 mpd φ m m mulGrp R PrimRoots D
196 n0 mulGrp R PrimRoots D m m mulGrp R PrimRoots D
197 195 196 sylibr φ mulGrp R PrimRoots D