| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitscyglem5.1 | ⊢ 𝐺  =  ( ( mulGrp ‘ 𝑅 )  ↾s  ( Unit ‘ 𝑅 ) ) | 
						
							| 2 |  | unitscyglem5.2 | ⊢ ( 𝜑  →  𝑅  ∈  IDomn ) | 
						
							| 3 |  | unitscyglem5.3 | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  ∈  Fin ) | 
						
							| 4 |  | unitscyglem5.4 | ⊢ ( 𝜑  →  𝐷  ∈  ℕ ) | 
						
							| 5 |  | unitscyglem5.5 | ⊢ ( 𝜑  →  𝐷  ∥  ( ♯ ‘ ( Base ‘ 𝐺 ) ) ) | 
						
							| 6 | 4 | phicld | ⊢ ( 𝜑  →  ( ϕ ‘ 𝐷 )  ∈  ℕ ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 8 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 9 | 2 | idomringd | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 10 |  | eqid | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 ) | 
						
							| 11 | 10 1 | unitgrp | ⊢ ( 𝑅  ∈  Ring  →  𝐺  ∈  Grp ) | 
						
							| 12 | 9 11 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 14 | 1 13 | ressbasss | ⊢ ( Base ‘ 𝐺 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 18 | 16 17 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 20 | 19 | eqimsscd | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑅 ) )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 21 | 15 20 | sstrd | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 22 | 3 21 | ssfid | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  ∈  Fin ) | 
						
							| 23 | 18 | eqcomi | ⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) )  =  ( Base ‘ 𝑅 ) | 
						
							| 24 | 23 10 | unitss | ⊢ ( Unit ‘ 𝑅 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  ( Unit ‘ 𝑅 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( Unit ‘ 𝑅 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( Unit ‘ 𝑅 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 28 | 1 13 | ressbasssg | ⊢ ( Base ‘ 𝐺 )  ⊆  ( ( Unit ‘ 𝑅 )  ∩  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  ⊆  ( ( Unit ‘ 𝑅 )  ∩  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) ) | 
						
							| 30 |  | inss1 | ⊢ ( ( Unit ‘ 𝑅 )  ∩  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) )  ⊆  ( Unit ‘ 𝑅 ) | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ( ( Unit ‘ 𝑅 )  ∩  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) )  ⊆  ( Unit ‘ 𝑅 ) ) | 
						
							| 32 | 29 31 | sstrd | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  ⊆  ( Unit ‘ 𝑅 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( Base ‘ 𝐺 )  ⊆  ( Unit ‘ 𝑅 ) ) | 
						
							| 34 | 33 | sseld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( 𝑧  ∈  ( Base ‘ 𝐺 )  →  𝑧  ∈  ( Unit ‘ 𝑅 ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  𝑧  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  𝑦  ∈  ℕ ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  𝑦  ∈  ℕ ) | 
						
							| 38 | 1 27 35 37 | ressmulgnnd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 0g ‘ 𝐺 )  ↔  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 40 | 39 | rabbidva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  =  { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  =  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 42 |  | fvex | ⊢ ( Base ‘ 𝐺 )  ∈  V | 
						
							| 43 | 42 | rabex | ⊢ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ∈  V | 
						
							| 44 | 43 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ∈  V ) | 
						
							| 45 |  | hashxrcl | ⊢ ( { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ∈  V  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ∈  ℝ* ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ∈  ℝ* ) | 
						
							| 47 | 41 46 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ∈  ℝ* ) | 
						
							| 48 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 49 | 48 | rabex | ⊢ { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ∈  V | 
						
							| 50 | 49 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ∈  V ) | 
						
							| 51 |  | hashxrcl | ⊢ ( { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ∈  V  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ∈  ℝ* ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ∈  ℝ* ) | 
						
							| 53 |  | nnre | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  𝑦  ∈  ℝ ) | 
						
							| 55 | 54 | rexrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  𝑦  ∈  ℝ* ) | 
						
							| 56 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑧  ∈  ( Base ‘ 𝐺 )  ∧  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) ) )  →  𝑧  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 57 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑧  ∈  ( Base ‘ 𝐺 )  ∧  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) ) )  →  ( Base ‘ 𝐺 )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 58 | 57 | sseld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑧  ∈  ( Base ‘ 𝐺 )  ∧  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) ) )  →  ( 𝑧  ∈  ( Base ‘ 𝐺 )  →  𝑧  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 59 | 56 58 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑧  ∈  ( Base ‘ 𝐺 )  ∧  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) ) )  →  𝑧  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 60 | 59 | rabss3d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ⊆  { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 61 | 50 60 | jca | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ∈  V  ∧  { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ⊆  { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 62 |  | hashss | ⊢ ( ( { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ∈  V  ∧  { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) }  ⊆  { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 63 | 61 62 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 64 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  𝑅  ∈  IDomn ) | 
						
							| 65 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 66 | 10 1 65 | unitgrpid | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 67 | 9 66 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 68 | 67 | eqcomd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 69 | 17 65 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 70 | 9 69 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 71 | 68 70 | eqeltrd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 73 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 74 | 17 73 | idomrootle | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ℕ )  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑦 ) | 
						
							| 75 | 64 72 36 74 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝑅 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑦 ) | 
						
							| 76 | 47 52 55 63 75 | xrletrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑦 ) | 
						
							| 77 | 41 76 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑦 ) | 
						
							| 78 | 77 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ℕ ( ♯ ‘ { 𝑧  ∈  ( Base ‘ 𝐺 )  ∣  ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑦 ) | 
						
							| 79 | 7 8 12 22 78 4 5 | unitscyglem4 | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) | 
						
							| 80 | 79 | eleq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  ∈  ℕ  ↔  ( ϕ ‘ 𝐷 )  ∈  ℕ ) ) | 
						
							| 81 | 6 80 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  ∈  ℕ ) | 
						
							| 82 | 81 | nngt0d | ⊢ ( 𝜑  →  0  <  ( ♯ ‘ { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } ) ) | 
						
							| 83 | 42 | rabex | ⊢ { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  ∈  V | 
						
							| 84 | 83 | a1i | ⊢ ( 𝜑  →  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  ∈  V ) | 
						
							| 85 |  | hashneq0 | ⊢ ( { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  ∈  V  →  ( 0  <  ( ♯ ‘ { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  ↔  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  ≠  ∅ ) ) | 
						
							| 86 | 84 85 | syl | ⊢ ( 𝜑  →  ( 0  <  ( ♯ ‘ { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  ↔  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  ≠  ∅ ) ) | 
						
							| 87 | 82 86 | mpbid | ⊢ ( 𝜑  →  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  ≠  ∅ ) | 
						
							| 88 |  | n0 | ⊢ ( { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  ≠  ∅  ↔  ∃ 𝑚 𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } ) | 
						
							| 89 | 87 88 | sylib | ⊢ ( 𝜑  →  ∃ 𝑚 𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } ) | 
						
							| 90 |  | nfv | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 91 |  | fveqeq2 | ⊢ ( 𝑤  =  𝑚  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) ) | 
						
							| 92 | 91 | elrab | ⊢ ( 𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  ↔  ( 𝑚  ∈  ( Base ‘ 𝐺 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) ) | 
						
							| 93 | 92 | biimpi | ⊢ ( 𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  →  ( 𝑚  ∈  ( Base ‘ 𝐺 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  →  ( 𝑚  ∈  ( Base ‘ 𝐺 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) ) | 
						
							| 95 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  ∧  ( 𝑚  ∈  ( Base ‘ 𝐺 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) )  →  𝜑 ) | 
						
							| 96 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  ∧  ( 𝑚  ∈  ( Base ‘ 𝐺 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) )  →  𝑚  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 97 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  ∧  ( 𝑚  ∈  ( Base ‘ 𝐺 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) | 
						
							| 98 | 95 96 97 | jca31 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  ∧  ( 𝑚  ∈  ( Base ‘ 𝐺 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) )  →  ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) ) | 
						
							| 99 | 2 | idomcringd | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 100 | 16 | crngmgp | ⊢ ( 𝑅  ∈  CRing  →  ( mulGrp ‘ 𝑅 )  ∈  CMnd ) | 
						
							| 101 | 99 100 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑅 )  ∈  CMnd ) | 
						
							| 102 | 101 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( mulGrp ‘ 𝑅 )  ∈  CMnd ) | 
						
							| 103 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝐷  ∈  ℕ ) | 
						
							| 104 | 15 | sselda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  →  𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 106 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝑅  ∈  Ring ) | 
						
							| 107 | 10 16 | unitsubm | ⊢ ( 𝑅  ∈  Ring  →  ( Unit ‘ 𝑅 )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 108 | 106 107 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( Unit ‘ 𝑅 )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 109 | 105 23 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝑚  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 110 | 102 | cmnmndd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 111 | 4 | nnzd | ⊢ ( 𝜑  →  𝐷  ∈  ℤ ) | 
						
							| 112 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 113 | 111 112 | zsubcld | ⊢ ( 𝜑  →  ( 𝐷  −  1 )  ∈  ℤ ) | 
						
							| 114 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 115 | 114 | addridd | ⊢ ( 𝜑  →  ( 1  +  0 )  =  1 ) | 
						
							| 116 | 4 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝐷 ) | 
						
							| 117 | 115 116 | eqbrtrd | ⊢ ( 𝜑  →  ( 1  +  0 )  ≤  𝐷 ) | 
						
							| 118 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 119 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 120 | 4 | nnred | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 121 | 118 119 120 | leaddsub2d | ⊢ ( 𝜑  →  ( ( 1  +  0 )  ≤  𝐷  ↔  0  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 122 | 117 121 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( 𝐷  −  1 ) ) | 
						
							| 123 | 113 122 | jca | ⊢ ( 𝜑  →  ( ( 𝐷  −  1 )  ∈  ℤ  ∧  0  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 124 |  | elnn0z | ⊢ ( ( 𝐷  −  1 )  ∈  ℕ0  ↔  ( ( 𝐷  −  1 )  ∈  ℤ  ∧  0  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 125 | 123 124 | sylibr | ⊢ ( 𝜑  →  ( 𝐷  −  1 )  ∈  ℕ0 ) | 
						
							| 126 | 125 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐷  −  1 )  ∈  ℕ0 ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 𝐷  −  1 )  ∈  ℕ0 ) | 
						
							| 128 | 18 73 110 127 109 | mulgnn0cld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 129 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  ∧  𝑜  =  ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) )  →  𝑜  =  ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) | 
						
							| 130 | 129 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  ∧  𝑜  =  ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) )  →  ( 𝑜 ( .r ‘ 𝑅 ) 𝑚 )  =  ( ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( .r ‘ 𝑅 ) 𝑚 ) ) | 
						
							| 131 | 130 | eqeq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  ∧  𝑜  =  ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) )  →  ( ( 𝑜 ( .r ‘ 𝑅 ) 𝑚 )  =  ( 1r ‘ 𝑅 )  ↔  ( ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( .r ‘ 𝑅 ) 𝑚 )  =  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 132 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 133 | 16 132 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 134 | 133 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( .r ‘ 𝑅 )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 135 | 134 | oveqd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( .r ‘ 𝑅 ) 𝑚 )  =  ( ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) | 
						
							| 136 | 103 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝐷  ∈  ℂ ) | 
						
							| 137 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  1  ∈  ℂ ) | 
						
							| 138 | 136 137 | npcand | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( 𝐷  −  1 )  +  1 )  =  𝐷 ) | 
						
							| 139 | 138 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝐷  =  ( ( 𝐷  −  1 )  +  1 ) ) | 
						
							| 140 | 139 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 𝐷 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 )  =  ( ( ( 𝐷  −  1 )  +  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) | 
						
							| 141 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 142 | 13 73 141 | mulgnn0p1 | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ( 𝐷  −  1 )  ∈  ℕ0  ∧  𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) )  →  ( ( ( 𝐷  −  1 )  +  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 )  =  ( ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) | 
						
							| 143 | 110 127 105 142 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( ( 𝐷  −  1 )  +  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 )  =  ( ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) | 
						
							| 144 | 140 143 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 )  =  ( 𝐷 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) | 
						
							| 145 | 16 65 | ringidval | ⊢ ( 1r ‘ 𝑅 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 146 | 145 | a1i | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 147 | 146 | eqcomd | ⊢ ( 𝜑  →  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 148 | 10 65 | 1unit | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 149 | 9 148 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 150 | 147 149 | eqeltrd | ⊢ ( 𝜑  →  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 151 | 150 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  →  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 152 | 151 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 153 | 24 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( Unit ‘ 𝑅 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 154 |  | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 155 | 1 13 154 | ress0g | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  ∈  ( Unit ‘ 𝑅 )  ∧  ( Unit ‘ 𝑅 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) )  →  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 156 | 110 152 153 155 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 157 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) | 
						
							| 158 | 157 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝐷  =  ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ) | 
						
							| 159 | 158 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 𝐷 ( .g ‘ 𝐺 ) 𝑚 )  =  ( ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ( .g ‘ 𝐺 ) 𝑚 ) ) | 
						
							| 160 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 161 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 162 | 7 160 8 161 | odid | ⊢ ( 𝑚  ∈  ( Base ‘ 𝐺 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ( .g ‘ 𝐺 ) 𝑚 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 163 | 162 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ( .g ‘ 𝐺 ) 𝑚 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 164 | 159 163 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 𝐷 ( .g ‘ 𝐺 ) 𝑚 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 165 | 164 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 0g ‘ 𝐺 )  =  ( 𝐷 ( .g ‘ 𝐺 ) 𝑚 ) ) | 
						
							| 166 | 156 165 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( 𝐷 ( .g ‘ 𝐺 ) 𝑚 ) ) | 
						
							| 167 | 32 | sselda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  →  𝑚  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 168 | 167 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝑚  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 169 | 1 153 168 103 | ressmulgnnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 𝐷 ( .g ‘ 𝐺 ) 𝑚 )  =  ( 𝐷 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) | 
						
							| 170 | 166 169 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 𝐷 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 171 | 144 170 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 172 | 145 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 1r ‘ 𝑅 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 173 | 172 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 174 | 171 173 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 175 | 135 174 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( ( 𝐷  −  1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( .r ‘ 𝑅 ) 𝑚 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 176 | 128 131 175 | rspcedvd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ∃ 𝑜  ∈  ( Base ‘ 𝑅 ) ( 𝑜 ( .r ‘ 𝑅 ) 𝑚 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 177 | 109 176 | jca | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 𝑚  ∈  ( Base ‘ 𝑅 )  ∧  ∃ 𝑜  ∈  ( Base ‘ 𝑅 ) ( 𝑜 ( .r ‘ 𝑅 ) 𝑚 )  =  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 178 |  | eqid | ⊢ ( ∥r ‘ 𝑅 )  =  ( ∥r ‘ 𝑅 ) | 
						
							| 179 | 17 178 132 | dvdsr | ⊢ ( 𝑚 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 )  ↔  ( 𝑚  ∈  ( Base ‘ 𝑅 )  ∧  ∃ 𝑜  ∈  ( Base ‘ 𝑅 ) ( 𝑜 ( .r ‘ 𝑅 ) 𝑚 )  =  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 180 | 177 179 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝑚 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) | 
						
							| 181 | 99 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  →  𝑅  ∈  CRing ) | 
						
							| 182 | 181 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝑅  ∈  CRing ) | 
						
							| 183 | 10 65 178 | crngunit | ⊢ ( 𝑅  ∈  CRing  →  ( 𝑚  ∈  ( Unit ‘ 𝑅 )  ↔  𝑚 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) | 
						
							| 184 | 182 183 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( 𝑚  ∈  ( Unit ‘ 𝑅 )  ↔  𝑚 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) | 
						
							| 185 | 180 184 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝑚  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 186 |  | eqid | ⊢ ( od ‘ ( mulGrp ‘ 𝑅 ) )  =  ( od ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 187 | 1 186 160 | submod | ⊢ ( ( ( Unit ‘ 𝑅 )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) )  ∧  𝑚  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( od ‘ ( mulGrp ‘ 𝑅 ) ) ‘ 𝑚 )  =  ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ) | 
						
							| 188 | 108 185 187 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( od ‘ ( mulGrp ‘ 𝑅 ) ) ‘ 𝑚 )  =  ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ) | 
						
							| 189 | 188 157 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  ( ( od ‘ ( mulGrp ‘ 𝑅 ) ) ‘ 𝑚 )  =  𝐷 ) | 
						
							| 190 | 102 103 105 189 | isprimroot2 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( Base ‘ 𝐺 ) )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 )  →  𝑚  ∈  ( ( mulGrp ‘ 𝑅 )  PrimRoots  𝐷 ) ) | 
						
							| 191 | 98 190 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  ∧  ( 𝑚  ∈  ( Base ‘ 𝐺 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑚 )  =  𝐷 ) )  →  𝑚  ∈  ( ( mulGrp ‘ 𝑅 )  PrimRoots  𝐷 ) ) | 
						
							| 192 | 94 191 | mpdan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 } )  →  𝑚  ∈  ( ( mulGrp ‘ 𝑅 )  PrimRoots  𝐷 ) ) | 
						
							| 193 | 192 | ex | ⊢ ( 𝜑  →  ( 𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  →  𝑚  ∈  ( ( mulGrp ‘ 𝑅 )  PrimRoots  𝐷 ) ) ) | 
						
							| 194 | 90 193 | eximd | ⊢ ( 𝜑  →  ( ∃ 𝑚 𝑚  ∈  { 𝑤  ∈  ( Base ‘ 𝐺 )  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑤 )  =  𝐷 }  →  ∃ 𝑚 𝑚  ∈  ( ( mulGrp ‘ 𝑅 )  PrimRoots  𝐷 ) ) ) | 
						
							| 195 | 89 194 | mpd | ⊢ ( 𝜑  →  ∃ 𝑚 𝑚  ∈  ( ( mulGrp ‘ 𝑅 )  PrimRoots  𝐷 ) ) | 
						
							| 196 |  | n0 | ⊢ ( ( ( mulGrp ‘ 𝑅 )  PrimRoots  𝐷 )  ≠  ∅  ↔  ∃ 𝑚 𝑚  ∈  ( ( mulGrp ‘ 𝑅 )  PrimRoots  𝐷 ) ) | 
						
							| 197 | 195 196 | sylibr | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝑅 )  PrimRoots  𝐷 )  ≠  ∅ ) |