Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem5.1 |
⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) |
2 |
|
unitscyglem5.2 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
3 |
|
unitscyglem5.3 |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ Fin ) |
4 |
|
unitscyglem5.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
5 |
|
unitscyglem5.5 |
⊢ ( 𝜑 → 𝐷 ∥ ( ♯ ‘ ( Base ‘ 𝐺 ) ) ) |
6 |
4
|
phicld |
⊢ ( 𝜑 → ( ϕ ‘ 𝐷 ) ∈ ℕ ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
9 |
2
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
11 |
10 1
|
unitgrp |
⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Grp ) |
12 |
9 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
13 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
14 |
1 13
|
ressbasss |
⊢ ( Base ‘ 𝐺 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
16 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
18 |
16 17
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
20 |
19
|
eqimsscd |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ⊆ ( Base ‘ 𝑅 ) ) |
21 |
15 20
|
sstrd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝑅 ) ) |
22 |
3 21
|
ssfid |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ∈ Fin ) |
23 |
18
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ 𝑅 ) |
24 |
23 10
|
unitss |
⊢ ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
28 |
1 13
|
ressbasssg |
⊢ ( Base ‘ 𝐺 ) ⊆ ( ( Unit ‘ 𝑅 ) ∩ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
29 |
28
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ⊆ ( ( Unit ‘ 𝑅 ) ∩ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) ) |
30 |
|
inss1 |
⊢ ( ( Unit ‘ 𝑅 ) ∩ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) ⊆ ( Unit ‘ 𝑅 ) |
31 |
30
|
a1i |
⊢ ( 𝜑 → ( ( Unit ‘ 𝑅 ) ∩ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) ⊆ ( Unit ‘ 𝑅 ) ) |
32 |
29 31
|
sstrd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ⊆ ( Unit ‘ 𝑅 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( Base ‘ 𝐺 ) ⊆ ( Unit ‘ 𝑅 ) ) |
34 |
33
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( 𝑧 ∈ ( Base ‘ 𝐺 ) → 𝑧 ∈ ( Unit ‘ 𝑅 ) ) ) |
35 |
34
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → 𝑧 ∈ ( Unit ‘ 𝑅 ) ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℕ ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → 𝑦 ∈ ℕ ) |
38 |
1 27 35 37
|
ressmulgnnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) ) |
39 |
38
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) ↔ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) ) |
40 |
39
|
rabbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) } = { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) |
41 |
40
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) = ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ) |
42 |
|
fvex |
⊢ ( Base ‘ 𝐺 ) ∈ V |
43 |
42
|
rabex |
⊢ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ∈ V |
44 |
43
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ∈ V ) |
45 |
|
hashxrcl |
⊢ ( { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ∈ V → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ∈ ℝ* ) |
46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ∈ ℝ* ) |
47 |
41 46
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ∈ ℝ* ) |
48 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
49 |
48
|
rabex |
⊢ { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ∈ V |
50 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ∈ V ) |
51 |
|
hashxrcl |
⊢ ( { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ∈ V → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ∈ ℝ* ) |
52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ∈ ℝ* ) |
53 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℝ ) |
55 |
54
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℝ* ) |
56 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
57 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) ) → ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝑅 ) ) |
58 |
57
|
sseld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) ) → ( 𝑧 ∈ ( Base ‘ 𝐺 ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) |
59 |
56 58
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
60 |
59
|
rabss3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ⊆ { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) |
61 |
50 60
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ∈ V ∧ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ⊆ { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ) |
62 |
|
hashss |
⊢ ( ( { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ∈ V ∧ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ⊆ { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ) |
63 |
61 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ) |
64 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → 𝑅 ∈ IDomn ) |
65 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
66 |
10 1 65
|
unitgrpid |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝐺 ) ) |
67 |
9 66
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝐺 ) ) |
68 |
67
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = ( 1r ‘ 𝑅 ) ) |
69 |
17 65
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
70 |
9 69
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
71 |
68 70
|
eqeltrd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝑅 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝑅 ) ) |
73 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑅 ) ) = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
74 |
17 73
|
idomrootle |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑦 ) |
75 |
64 72 36 74
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝑅 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑦 ) |
76 |
47 52 55 63 75
|
xrletrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑦 ) |
77 |
41 76
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑦 ) |
78 |
77
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℕ ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑦 ) |
79 |
7 8 12 22 78 4 5
|
unitscyglem4 |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
80 |
79
|
eleq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) ∈ ℕ ↔ ( ϕ ‘ 𝐷 ) ∈ ℕ ) ) |
81 |
6 80
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) ∈ ℕ ) |
82 |
81
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ♯ ‘ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) ) |
83 |
42
|
rabex |
⊢ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ∈ V |
84 |
83
|
a1i |
⊢ ( 𝜑 → { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ∈ V ) |
85 |
|
hashneq0 |
⊢ ( { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ∈ V → ( 0 < ( ♯ ‘ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) ↔ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ≠ ∅ ) ) |
86 |
84 85
|
syl |
⊢ ( 𝜑 → ( 0 < ( ♯ ‘ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) ↔ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ≠ ∅ ) ) |
87 |
82 86
|
mpbid |
⊢ ( 𝜑 → { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ≠ ∅ ) |
88 |
|
n0 |
⊢ ( { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ≠ ∅ ↔ ∃ 𝑚 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) |
89 |
87 88
|
sylib |
⊢ ( 𝜑 → ∃ 𝑚 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) |
90 |
|
nfv |
⊢ Ⅎ 𝑚 𝜑 |
91 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑚 → ( ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ) |
92 |
91
|
elrab |
⊢ ( 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ↔ ( 𝑚 ∈ ( Base ‘ 𝐺 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ) |
93 |
92
|
biimpi |
⊢ ( 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } → ( 𝑚 ∈ ( Base ‘ 𝐺 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ) |
94 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) → ( 𝑚 ∈ ( Base ‘ 𝐺 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ) |
95 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) ∧ ( 𝑚 ∈ ( Base ‘ 𝐺 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ) → 𝜑 ) |
96 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) ∧ ( 𝑚 ∈ ( Base ‘ 𝐺 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ) → 𝑚 ∈ ( Base ‘ 𝐺 ) ) |
97 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) ∧ ( 𝑚 ∈ ( Base ‘ 𝐺 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) |
98 |
95 96 97
|
jca31 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) ∧ ( 𝑚 ∈ ( Base ‘ 𝐺 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ) → ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ) |
99 |
2
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
100 |
16
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
101 |
99 100
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
102 |
101
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
103 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝐷 ∈ ℕ ) |
104 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) → 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
105 |
104
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
106 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝑅 ∈ Ring ) |
107 |
10 16
|
unitsubm |
⊢ ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
108 |
106 107
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( Unit ‘ 𝑅 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
109 |
105 23
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝑚 ∈ ( Base ‘ 𝑅 ) ) |
110 |
102
|
cmnmndd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
111 |
4
|
nnzd |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
112 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
113 |
111 112
|
zsubcld |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℤ ) |
114 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
115 |
114
|
addridd |
⊢ ( 𝜑 → ( 1 + 0 ) = 1 ) |
116 |
4
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝐷 ) |
117 |
115 116
|
eqbrtrd |
⊢ ( 𝜑 → ( 1 + 0 ) ≤ 𝐷 ) |
118 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
119 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
120 |
4
|
nnred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
121 |
118 119 120
|
leaddsub2d |
⊢ ( 𝜑 → ( ( 1 + 0 ) ≤ 𝐷 ↔ 0 ≤ ( 𝐷 − 1 ) ) ) |
122 |
117 121
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( 𝐷 − 1 ) ) |
123 |
113 122
|
jca |
⊢ ( 𝜑 → ( ( 𝐷 − 1 ) ∈ ℤ ∧ 0 ≤ ( 𝐷 − 1 ) ) ) |
124 |
|
elnn0z |
⊢ ( ( 𝐷 − 1 ) ∈ ℕ0 ↔ ( ( 𝐷 − 1 ) ∈ ℤ ∧ 0 ≤ ( 𝐷 − 1 ) ) ) |
125 |
123 124
|
sylibr |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℕ0 ) |
126 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐷 − 1 ) ∈ ℕ0 ) |
127 |
126
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 𝐷 − 1 ) ∈ ℕ0 ) |
128 |
18 73 110 127 109
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ∈ ( Base ‘ 𝑅 ) ) |
129 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ∧ 𝑜 = ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) → 𝑜 = ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) |
130 |
129
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ∧ 𝑜 = ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) → ( 𝑜 ( .r ‘ 𝑅 ) 𝑚 ) = ( ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( .r ‘ 𝑅 ) 𝑚 ) ) |
131 |
130
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ∧ 𝑜 = ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) → ( ( 𝑜 ( .r ‘ 𝑅 ) 𝑚 ) = ( 1r ‘ 𝑅 ) ↔ ( ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( 1r ‘ 𝑅 ) ) ) |
132 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
133 |
16 132
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
134 |
133
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
135 |
134
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) |
136 |
103
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝐷 ∈ ℂ ) |
137 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 1 ∈ ℂ ) |
138 |
136 137
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( 𝐷 − 1 ) + 1 ) = 𝐷 ) |
139 |
138
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝐷 = ( ( 𝐷 − 1 ) + 1 ) ) |
140 |
139
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 𝐷 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) = ( ( ( 𝐷 − 1 ) + 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) |
141 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
142 |
13 73 141
|
mulgnn0p1 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( 𝐷 − 1 ) ∈ ℕ0 ∧ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( ( ( 𝐷 − 1 ) + 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) = ( ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) |
143 |
110 127 105 142
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( ( 𝐷 − 1 ) + 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) = ( ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) |
144 |
140 143
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) = ( 𝐷 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) |
145 |
16 65
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
146 |
145
|
a1i |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
147 |
146
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
148 |
10 65
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
149 |
9 148
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
150 |
147 149
|
eqeltrd |
⊢ ( 𝜑 → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
151 |
150
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
152 |
151
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
153 |
24
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
154 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
155 |
1 13 154
|
ress0g |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ∧ ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ 𝐺 ) ) |
156 |
110 152 153 155
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ 𝐺 ) ) |
157 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) |
158 |
157
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝐷 = ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ) |
159 |
158
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 𝐷 ( .g ‘ 𝐺 ) 𝑚 ) = ( ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ( .g ‘ 𝐺 ) 𝑚 ) ) |
160 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
161 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
162 |
7 160 8 161
|
odid |
⊢ ( 𝑚 ∈ ( Base ‘ 𝐺 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ( .g ‘ 𝐺 ) 𝑚 ) = ( 0g ‘ 𝐺 ) ) |
163 |
162
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ( .g ‘ 𝐺 ) 𝑚 ) = ( 0g ‘ 𝐺 ) ) |
164 |
159 163
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 𝐷 ( .g ‘ 𝐺 ) 𝑚 ) = ( 0g ‘ 𝐺 ) ) |
165 |
164
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 0g ‘ 𝐺 ) = ( 𝐷 ( .g ‘ 𝐺 ) 𝑚 ) ) |
166 |
156 165
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 𝐷 ( .g ‘ 𝐺 ) 𝑚 ) ) |
167 |
32
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) → 𝑚 ∈ ( Unit ‘ 𝑅 ) ) |
168 |
167
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝑚 ∈ ( Unit ‘ 𝑅 ) ) |
169 |
1 153 168 103
|
ressmulgnnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 𝐷 ( .g ‘ 𝐺 ) 𝑚 ) = ( 𝐷 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ) |
170 |
166 169
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 𝐷 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
171 |
144 170
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
172 |
145
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
173 |
172
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
174 |
171 173
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) = ( 1r ‘ 𝑅 ) ) |
175 |
135 174
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( ( 𝐷 − 1 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑚 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( 1r ‘ 𝑅 ) ) |
176 |
128 131 175
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ∃ 𝑜 ∈ ( Base ‘ 𝑅 ) ( 𝑜 ( .r ‘ 𝑅 ) 𝑚 ) = ( 1r ‘ 𝑅 ) ) |
177 |
109 176
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑜 ∈ ( Base ‘ 𝑅 ) ( 𝑜 ( .r ‘ 𝑅 ) 𝑚 ) = ( 1r ‘ 𝑅 ) ) ) |
178 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
179 |
17 178 132
|
dvdsr |
⊢ ( 𝑚 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ↔ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑜 ∈ ( Base ‘ 𝑅 ) ( 𝑜 ( .r ‘ 𝑅 ) 𝑚 ) = ( 1r ‘ 𝑅 ) ) ) |
180 |
177 179
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝑚 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
181 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) → 𝑅 ∈ CRing ) |
182 |
181
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝑅 ∈ CRing ) |
183 |
10 65 178
|
crngunit |
⊢ ( 𝑅 ∈ CRing → ( 𝑚 ∈ ( Unit ‘ 𝑅 ) ↔ 𝑚 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
184 |
182 183
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( 𝑚 ∈ ( Unit ‘ 𝑅 ) ↔ 𝑚 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
185 |
180 184
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝑚 ∈ ( Unit ‘ 𝑅 ) ) |
186 |
|
eqid |
⊢ ( od ‘ ( mulGrp ‘ 𝑅 ) ) = ( od ‘ ( mulGrp ‘ 𝑅 ) ) |
187 |
1 186 160
|
submod |
⊢ ( ( ( Unit ‘ 𝑅 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ∧ 𝑚 ∈ ( Unit ‘ 𝑅 ) ) → ( ( od ‘ ( mulGrp ‘ 𝑅 ) ) ‘ 𝑚 ) = ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ) |
188 |
108 185 187
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( od ‘ ( mulGrp ‘ 𝑅 ) ) ‘ 𝑚 ) = ( ( od ‘ 𝐺 ) ‘ 𝑚 ) ) |
189 |
188 157
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → ( ( od ‘ ( mulGrp ‘ 𝑅 ) ) ‘ 𝑚 ) = 𝐷 ) |
190 |
102 103 105 189
|
isprimroot2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) → 𝑚 ∈ ( ( mulGrp ‘ 𝑅 ) PrimRoots 𝐷 ) ) |
191 |
98 190
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) ∧ ( 𝑚 ∈ ( Base ‘ 𝐺 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑚 ) = 𝐷 ) ) → 𝑚 ∈ ( ( mulGrp ‘ 𝑅 ) PrimRoots 𝐷 ) ) |
192 |
94 191
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } ) → 𝑚 ∈ ( ( mulGrp ‘ 𝑅 ) PrimRoots 𝐷 ) ) |
193 |
192
|
ex |
⊢ ( 𝜑 → ( 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } → 𝑚 ∈ ( ( mulGrp ‘ 𝑅 ) PrimRoots 𝐷 ) ) ) |
194 |
90 193
|
eximd |
⊢ ( 𝜑 → ( ∃ 𝑚 𝑚 ∈ { 𝑤 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑤 ) = 𝐷 } → ∃ 𝑚 𝑚 ∈ ( ( mulGrp ‘ 𝑅 ) PrimRoots 𝐷 ) ) ) |
195 |
89 194
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 𝑚 ∈ ( ( mulGrp ‘ 𝑅 ) PrimRoots 𝐷 ) ) |
196 |
|
n0 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) PrimRoots 𝐷 ) ≠ ∅ ↔ ∃ 𝑚 𝑚 ∈ ( ( mulGrp ‘ 𝑅 ) PrimRoots 𝐷 ) ) |
197 |
195 196
|
sylibr |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) PrimRoots 𝐷 ) ≠ ∅ ) |