| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks5lem7.1 | ⊢ ( 𝜑  →  ( ♯ ‘ ( Base ‘ 𝐾 ) )  ∈  ℕ ) | 
						
							| 2 |  | aks5lem7.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks5lem7.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks5lem7.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks5lem7.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks5lem7.6 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 7 |  | aks5lem7.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks5lem7.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks5lem7.9 | ⊢ 𝐴  =  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 10 |  | aks5lem7.10 | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) | 
						
							| 11 |  | aks5lem7.11 | ⊢ ( 𝜑  →  𝑅  ∥  ( ( ♯ ‘ ( Base ‘ 𝐾 ) )  −  1 ) ) | 
						
							| 12 |  | aks5lem7.12 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆  ~QG  𝐿 )  =  [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆  ~QG  𝐿 ) ) | 
						
							| 13 |  | aks5lem7.13 | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝑏  gcd  𝑁 )  =  1 ) | 
						
							| 14 |  | aks5lem7.14 | ⊢ 𝑆  =  ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) | 
						
							| 15 |  | aks5lem7.15 | ⊢ 𝐿  =  ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) | 
						
							| 16 |  | aks5lem7.16 | ⊢ 𝑋  =  ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) | 
						
							| 17 |  | eqid | ⊢ { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑙  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑙 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑙 ) ) ) }  =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑙  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑙 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑙 ) ) ) } | 
						
							| 18 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  𝐾  ∈  Field ) | 
						
							| 19 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 20 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  𝑅  ∈  ℕ ) | 
						
							| 21 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 22 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  𝑃  ∥  𝑁 ) | 
						
							| 23 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 24 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 26 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( .g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 27 |  | eqid | ⊢ ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) | 
						
							| 28 |  | fldidom | ⊢ ( 𝐾  ∈  Field  →  𝐾  ∈  IDomn ) | 
						
							| 29 | 3 28 | syl | ⊢ ( 𝜑  →  𝐾  ∈  IDomn ) | 
						
							| 30 | 29 | idomcringd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 31 | 25 2 26 27 30 4 | frobrhm | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingHom  𝐾 ) ) | 
						
							| 32 | 3 3 31 25 25 | fldhmf1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1→ ( Base ‘ 𝐾 ) ) | 
						
							| 33 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  ∈  V ) | 
						
							| 34 |  | eqeng | ⊢ ( ( Base ‘ 𝐾 )  ∈  V  →  ( ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  →  ( Base ‘ 𝐾 )  ≈  ( Base ‘ 𝐾 ) ) ) | 
						
							| 35 | 33 25 34 | mpisyl | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  ≈  ( Base ‘ 𝐾 ) ) | 
						
							| 36 | 1 | nnnn0d | ⊢ ( 𝜑  →  ( ♯ ‘ ( Base ‘ 𝐾 ) )  ∈  ℕ0 ) | 
						
							| 37 |  | hashclb | ⊢ ( ( Base ‘ 𝐾 )  ∈  V  →  ( ( Base ‘ 𝐾 )  ∈  Fin  ↔  ( ♯ ‘ ( Base ‘ 𝐾 ) )  ∈  ℕ0 ) ) | 
						
							| 38 | 33 37 | syl | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐾 )  ∈  Fin  ↔  ( ♯ ‘ ( Base ‘ 𝐾 ) )  ∈  ℕ0 ) ) | 
						
							| 39 | 36 38 | mpbird | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  ∈  Fin ) | 
						
							| 40 |  | f1finf1o | ⊢ ( ( ( Base ‘ 𝐾 )  ≈  ( Base ‘ 𝐾 )  ∧  ( Base ‘ 𝐾 )  ∈  Fin )  →  ( ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1→ ( Base ‘ 𝐾 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) ) | 
						
							| 41 | 35 39 40 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1→ ( Base ‘ 𝐾 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) ) | 
						
							| 42 | 32 41 | mpbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) | 
						
							| 43 | 31 42 | jca | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingHom  𝐾 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) ) | 
						
							| 44 | 25 25 | isrim | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 )  ↔  ( ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingHom  𝐾 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) ) | 
						
							| 45 | 43 44 | sylibr | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 48 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  ∀ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝑏  gcd  𝑁 )  =  1 ) | 
						
							| 49 | 16 | oveq2i | ⊢ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 )  =  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) | 
						
							| 50 | 49 | oveq1i | ⊢ ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) )  =  ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) | 
						
							| 51 | 50 | sneqi | ⊢ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) }  =  { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } | 
						
							| 52 | 51 | fveq2i | ⊢ ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } )  =  ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) | 
						
							| 53 | 15 52 | eqtri | ⊢ 𝐿  =  ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) | 
						
							| 54 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆  ~QG  𝐿 )  =  [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆  ~QG  𝐿 ) ) | 
						
							| 55 | 17 2 18 19 20 21 22 23 9 24 46 47 48 14 53 16 54 | aks5lem6 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  𝑁  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝑁 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  ∧  𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) )  →  𝑁  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝑁 ) ) ) | 
						
							| 57 |  | eqid | ⊢ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) )  =  ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) | 
						
							| 58 | 3 | flddrngd | ⊢ ( 𝜑  →  𝐾  ∈  DivRing ) | 
						
							| 59 |  | eqid | ⊢ ( Unit ‘ 𝐾 )  =  ( Unit ‘ 𝐾 ) | 
						
							| 60 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 61 | 25 59 60 | isdrng | ⊢ ( 𝐾  ∈  DivRing  ↔  ( 𝐾  ∈  Ring  ∧  ( Unit ‘ 𝐾 )  =  ( ( Base ‘ 𝐾 )  ∖  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 62 | 61 | biimpi | ⊢ ( 𝐾  ∈  DivRing  →  ( 𝐾  ∈  Ring  ∧  ( Unit ‘ 𝐾 )  =  ( ( Base ‘ 𝐾 )  ∖  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 63 | 58 62 | syl | ⊢ ( 𝜑  →  ( 𝐾  ∈  Ring  ∧  ( Unit ‘ 𝐾 )  =  ( ( Base ‘ 𝐾 )  ∖  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 64 | 63 | simprd | ⊢ ( 𝜑  →  ( Unit ‘ 𝐾 )  =  ( ( Base ‘ 𝐾 )  ∖  { ( 0g ‘ 𝐾 ) } ) ) | 
						
							| 65 | 64 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ( Unit ‘ 𝐾 ) )  =  ( ♯ ‘ ( ( Base ‘ 𝐾 )  ∖  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 66 | 63 | simpld | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 67 |  | ringgrp | ⊢ ( 𝐾  ∈  Ring  →  𝐾  ∈  Grp ) | 
						
							| 68 | 66 67 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Grp ) | 
						
							| 69 | 25 60 | grpidcl | ⊢ ( 𝐾  ∈  Grp  →  ( 0g ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 70 | 68 69 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 71 |  | hashdifsn | ⊢ ( ( ( Base ‘ 𝐾 )  ∈  Fin  ∧  ( 0g ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ♯ ‘ ( ( Base ‘ 𝐾 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  =  ( ( ♯ ‘ ( Base ‘ 𝐾 ) )  −  1 ) ) | 
						
							| 72 | 39 70 71 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( Base ‘ 𝐾 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  =  ( ( ♯ ‘ ( Base ‘ 𝐾 ) )  −  1 ) ) | 
						
							| 73 | 65 72 | eqtr2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( Base ‘ 𝐾 ) )  −  1 )  =  ( ♯ ‘ ( Unit ‘ 𝐾 ) ) ) | 
						
							| 74 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 75 | 74 25 | mgpbas | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 76 | 75 | eqcomi | ⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) )  =  ( Base ‘ 𝐾 ) | 
						
							| 77 | 76 59 | unitss | ⊢ ( Unit ‘ 𝐾 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 78 | 77 | a1i | ⊢ ( 𝜑  →  ( Unit ‘ 𝐾 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 79 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 80 | 57 79 | ressbas2 | ⊢ ( ( Unit ‘ 𝐾 )  ⊆  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  →  ( Unit ‘ 𝐾 )  =  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) ) | 
						
							| 81 | 78 80 | syl | ⊢ ( 𝜑  →  ( Unit ‘ 𝐾 )  =  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) ) | 
						
							| 82 | 81 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ( Unit ‘ 𝐾 ) )  =  ( ♯ ‘ ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) ) ) | 
						
							| 83 | 73 82 | eqtrd | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( Base ‘ 𝐾 ) )  −  1 )  =  ( ♯ ‘ ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) ) ) | 
						
							| 84 | 11 83 | breqtrd | ⊢ ( 𝜑  →  𝑅  ∥  ( ♯ ‘ ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) ) ) | 
						
							| 85 | 57 29 39 5 84 | unitscyglem5 | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  ≠  ∅ ) | 
						
							| 86 |  | n0rex | ⊢ ( ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  ≠  ∅  →  ∃ 𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) 𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 87 | 85 86 | syl | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) 𝑚  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 88 | 56 87 | r19.29a | ⊢ ( 𝜑  →  𝑁  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝑁 ) ) ) |