Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lem7.1 |
⊢ ( 𝜑 → ( ♯ ‘ ( Base ‘ 𝐾 ) ) ∈ ℕ ) |
2 |
|
aks5lem7.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks5lem7.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks5lem7.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks5lem7.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks5lem7.6 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
7 |
|
aks5lem7.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks5lem7.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks5lem7.9 |
⊢ 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
10 |
|
aks5lem7.10 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
11 |
|
aks5lem7.11 |
⊢ ( 𝜑 → 𝑅 ∥ ( ( ♯ ‘ ( Base ‘ 𝐾 ) ) − 1 ) ) |
12 |
|
aks5lem7.12 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
13 |
|
aks5lem7.13 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
14 |
|
aks5lem7.14 |
⊢ 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
15 |
|
aks5lem7.15 |
⊢ 𝐿 = ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) |
16 |
|
aks5lem7.16 |
⊢ 𝑋 = ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
17 |
|
eqid |
⊢ { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑙 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑙 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑙 ) ) ) } = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑙 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑙 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑙 ) ) ) } |
18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝐾 ∈ Field ) |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝑃 ∈ ℙ ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝑅 ∈ ℕ ) |
21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
22 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝑃 ∥ 𝑁 ) |
23 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
24 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
26 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
27 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) |
28 |
|
fldidom |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ IDomn ) |
29 |
3 28
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ IDomn ) |
30 |
29
|
idomcringd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
31 |
25 2 26 27 30 4
|
frobrhm |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingHom 𝐾 ) ) |
32 |
3 3 31 25 25
|
fldhmf1 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1→ ( Base ‘ 𝐾 ) ) |
33 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ∈ V ) |
34 |
|
eqeng |
⊢ ( ( Base ‘ 𝐾 ) ∈ V → ( ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) → ( Base ‘ 𝐾 ) ≈ ( Base ‘ 𝐾 ) ) ) |
35 |
33 25 34
|
mpisyl |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ≈ ( Base ‘ 𝐾 ) ) |
36 |
1
|
nnnn0d |
⊢ ( 𝜑 → ( ♯ ‘ ( Base ‘ 𝐾 ) ) ∈ ℕ0 ) |
37 |
|
hashclb |
⊢ ( ( Base ‘ 𝐾 ) ∈ V → ( ( Base ‘ 𝐾 ) ∈ Fin ↔ ( ♯ ‘ ( Base ‘ 𝐾 ) ) ∈ ℕ0 ) ) |
38 |
33 37
|
syl |
⊢ ( 𝜑 → ( ( Base ‘ 𝐾 ) ∈ Fin ↔ ( ♯ ‘ ( Base ‘ 𝐾 ) ) ∈ ℕ0 ) ) |
39 |
36 38
|
mpbird |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ∈ Fin ) |
40 |
|
f1finf1o |
⊢ ( ( ( Base ‘ 𝐾 ) ≈ ( Base ‘ 𝐾 ) ∧ ( Base ‘ 𝐾 ) ∈ Fin ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1→ ( Base ‘ 𝐾 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) ) |
41 |
35 39 40
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1→ ( Base ‘ 𝐾 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) ) |
42 |
32 41
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
43 |
31 42
|
jca |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingHom 𝐾 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) ) |
44 |
25 25
|
isrim |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingHom 𝐾 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) ) |
45 |
43 44
|
sylibr |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
48 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
49 |
16
|
oveq2i |
⊢ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) = ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
50 |
49
|
oveq1i |
⊢ ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) |
51 |
50
|
sneqi |
⊢ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } = { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } |
52 |
51
|
fveq2i |
⊢ ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) = ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) |
53 |
15 52
|
eqtri |
⊢ 𝐿 = ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) |
54 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
55 |
17 2 18 19 20 21 22 23 9 24 46 47 48 14 53 16 54
|
aks5lem6 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) ∧ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) → 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) |
57 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) = ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) |
58 |
3
|
flddrngd |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
59 |
|
eqid |
⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) |
60 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
61 |
25 59 60
|
isdrng |
⊢ ( 𝐾 ∈ DivRing ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ) |
62 |
61
|
biimpi |
⊢ ( 𝐾 ∈ DivRing → ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ) |
63 |
58 62
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ) |
64 |
63
|
simprd |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) |
65 |
64
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( Unit ‘ 𝐾 ) ) = ( ♯ ‘ ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ) |
66 |
63
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
67 |
|
ringgrp |
⊢ ( 𝐾 ∈ Ring → 𝐾 ∈ Grp ) |
68 |
66 67
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Grp ) |
69 |
25 60
|
grpidcl |
⊢ ( 𝐾 ∈ Grp → ( 0g ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
70 |
68 69
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
71 |
|
hashdifsn |
⊢ ( ( ( Base ‘ 𝐾 ) ∈ Fin ∧ ( 0g ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) → ( ♯ ‘ ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) = ( ( ♯ ‘ ( Base ‘ 𝐾 ) ) − 1 ) ) |
72 |
39 70 71
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) = ( ( ♯ ‘ ( Base ‘ 𝐾 ) ) − 1 ) ) |
73 |
65 72
|
eqtr2d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( Base ‘ 𝐾 ) ) − 1 ) = ( ♯ ‘ ( Unit ‘ 𝐾 ) ) ) |
74 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
75 |
74 25
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
76 |
75
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ 𝐾 ) |
77 |
76 59
|
unitss |
⊢ ( Unit ‘ 𝐾 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
78 |
77
|
a1i |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
79 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
80 |
57 79
|
ressbas2 |
⊢ ( ( Unit ‘ 𝐾 ) ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) → ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) |
81 |
78 80
|
syl |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) |
82 |
81
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( Unit ‘ 𝐾 ) ) = ( ♯ ‘ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) ) |
83 |
73 82
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( Base ‘ 𝐾 ) ) − 1 ) = ( ♯ ‘ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) ) |
84 |
11 83
|
breqtrd |
⊢ ( 𝜑 → 𝑅 ∥ ( ♯ ‘ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) ) |
85 |
57 29 39 5 84
|
unitscyglem5 |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ≠ ∅ ) |
86 |
|
n0rex |
⊢ ( ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ≠ ∅ → ∃ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
87 |
85 86
|
syl |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) 𝑚 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
88 |
56 87
|
r19.29a |
⊢ ( 𝜑 → 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) |