| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snssi |
⊢ ( 𝐵 ∈ 𝐴 → { 𝐵 } ⊆ 𝐴 ) |
| 2 |
|
hashssdif |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝐵 } ⊆ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ { 𝐵 } ) ) ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ { 𝐵 } ) ) ) |
| 4 |
|
hashsng |
⊢ ( 𝐵 ∈ 𝐴 → ( ♯ ‘ { 𝐵 } ) = 1 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ { 𝐵 } ) = 1 ) |
| 6 |
5
|
oveq2d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 7 |
3 6
|
eqtrd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |