Metamath Proof Explorer


Theorem hashdifsn

Description: The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018)

Ref Expression
Assertion hashdifsn AFinBAAB=A1

Proof

Step Hyp Ref Expression
1 snssi BABA
2 hashssdif AFinBAAB=AB
3 1 2 sylan2 AFinBAAB=AB
4 hashsng BAB=1
5 4 adantl AFinBAB=1
6 5 oveq2d AFinBAAB=A1
7 3 6 eqtrd AFinBAAB=A1