Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lem7.1 |
|
2 |
|
aks5lem7.2 |
|
3 |
|
aks5lem7.3 |
|
4 |
|
aks5lem7.4 |
|
5 |
|
aks5lem7.5 |
|
6 |
|
aks5lem7.6 |
|
7 |
|
aks5lem7.7 |
|
8 |
|
aks5lem7.8 |
|
9 |
|
aks5lem7.9 |
|
10 |
|
aks5lem7.10 |
|
11 |
|
aks5lem7.11 |
|
12 |
|
aks5lem7.12 |
|
13 |
|
aks5lem7.13 |
|
14 |
|
aks5lem7.14 |
|
15 |
|
aks5lem7.15 |
|
16 |
|
aks5lem7.16 |
|
17 |
|
eqid |
|
18 |
3
|
adantr |
|
19 |
4
|
adantr |
|
20 |
5
|
adantr |
|
21 |
6
|
adantr |
|
22 |
7
|
adantr |
|
23 |
8
|
adantr |
|
24 |
10
|
adantr |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
fldidom |
|
29 |
3 28
|
syl |
|
30 |
29
|
idomcringd |
|
31 |
25 2 26 27 30 4
|
frobrhm |
|
32 |
3 3 31 25 25
|
fldhmf1 |
|
33 |
|
fvexd |
|
34 |
|
eqeng |
|
35 |
33 25 34
|
mpisyl |
|
36 |
1
|
nnnn0d |
|
37 |
|
hashclb |
|
38 |
33 37
|
syl |
|
39 |
36 38
|
mpbird |
|
40 |
|
f1finf1o |
|
41 |
35 39 40
|
syl2anc |
|
42 |
32 41
|
mpbid |
|
43 |
31 42
|
jca |
|
44 |
25 25
|
isrim |
|
45 |
43 44
|
sylibr |
|
46 |
45
|
adantr |
|
47 |
|
simpr |
|
48 |
13
|
adantr |
|
49 |
16
|
oveq2i |
|
50 |
49
|
oveq1i |
|
51 |
50
|
sneqi |
|
52 |
51
|
fveq2i |
|
53 |
15 52
|
eqtri |
|
54 |
12
|
adantr |
|
55 |
17 2 18 19 20 21 22 23 9 24 46 47 48 14 53 16 54
|
aks5lem6 |
|
56 |
55
|
adantr |
|
57 |
|
eqid |
|
58 |
3
|
flddrngd |
|
59 |
|
eqid |
|
60 |
|
eqid |
|
61 |
25 59 60
|
isdrng |
|
62 |
61
|
biimpi |
|
63 |
58 62
|
syl |
|
64 |
63
|
simprd |
|
65 |
64
|
fveq2d |
|
66 |
63
|
simpld |
|
67 |
|
ringgrp |
|
68 |
66 67
|
syl |
|
69 |
25 60
|
grpidcl |
|
70 |
68 69
|
syl |
|
71 |
|
hashdifsn |
|
72 |
39 70 71
|
syl2anc |
|
73 |
65 72
|
eqtr2d |
|
74 |
|
eqid |
|
75 |
74 25
|
mgpbas |
|
76 |
75
|
eqcomi |
|
77 |
76 59
|
unitss |
|
78 |
77
|
a1i |
|
79 |
|
eqid |
|
80 |
57 79
|
ressbas2 |
|
81 |
78 80
|
syl |
|
82 |
81
|
fveq2d |
|
83 |
73 82
|
eqtrd |
|
84 |
11 83
|
breqtrd |
|
85 |
57 29 39 5 84
|
unitscyglem5 |
|
86 |
|
n0rex |
|
87 |
85 86
|
syl |
|
88 |
56 87
|
r19.29a |
|