Metamath Proof Explorer


Theorem aks5lem7

Description: Lemma for aks5. We clean up the hypotheses compared to aks5lem6 . (Contributed by metakunt, 9-Aug-2025)

Ref Expression
Hypotheses aks5lem7.1 φ Base K
aks5lem7.2 P = chr K
aks5lem7.3 φ K Field
aks5lem7.4 φ P
aks5lem7.5 φ R
aks5lem7.6 φ N 3
aks5lem7.7 φ P N
aks5lem7.8 φ N gcd R = 1
aks5lem7.9 A = ϕ R log 2 N
aks5lem7.10 φ log 2 N 2 < od R N
aks5lem7.11 φ R Base K 1
aks5lem7.12 φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
aks5lem7.13 φ b 1 A b gcd N = 1
aks5lem7.14 S = Poly 1 /N
aks5lem7.15 L = RSpan S R mulGrp S X - S 1 S
aks5lem7.16 X = var 1 /N
Assertion aks5lem7 φ N = P P pCnt N

Proof

Step Hyp Ref Expression
1 aks5lem7.1 φ Base K
2 aks5lem7.2 P = chr K
3 aks5lem7.3 φ K Field
4 aks5lem7.4 φ P
5 aks5lem7.5 φ R
6 aks5lem7.6 φ N 3
7 aks5lem7.7 φ P N
8 aks5lem7.8 φ N gcd R = 1
9 aks5lem7.9 A = ϕ R log 2 N
10 aks5lem7.10 φ log 2 N 2 < od R N
11 aks5lem7.11 φ R Base K 1
12 aks5lem7.12 φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
13 aks5lem7.13 φ b 1 A b gcd N = 1
14 aks5lem7.14 S = Poly 1 /N
15 aks5lem7.15 L = RSpan S R mulGrp S X - S 1 S
16 aks5lem7.16 X = var 1 /N
17 eqid e f | e f Base Poly 1 K l mulGrp K PrimRoots R e mulGrp K eval 1 K f l = eval 1 K f e mulGrp K l = e f | e f Base Poly 1 K l mulGrp K PrimRoots R e mulGrp K eval 1 K f l = eval 1 K f e mulGrp K l
18 3 adantr φ m mulGrp K PrimRoots R K Field
19 4 adantr φ m mulGrp K PrimRoots R P
20 5 adantr φ m mulGrp K PrimRoots R R
21 6 adantr φ m mulGrp K PrimRoots R N 3
22 7 adantr φ m mulGrp K PrimRoots R P N
23 8 adantr φ m mulGrp K PrimRoots R N gcd R = 1
24 10 adantr φ m mulGrp K PrimRoots R log 2 N 2 < od R N
25 eqid Base K = Base K
26 eqid mulGrp K = mulGrp K
27 eqid x Base K P mulGrp K x = x Base K P mulGrp K x
28 fldidom K Field K IDomn
29 3 28 syl φ K IDomn
30 29 idomcringd φ K CRing
31 25 2 26 27 30 4 frobrhm φ x Base K P mulGrp K x K RingHom K
32 3 3 31 25 25 fldhmf1 φ x Base K P mulGrp K x : Base K 1-1 Base K
33 fvexd φ Base K V
34 eqeng Base K V Base K = Base K Base K Base K
35 33 25 34 mpisyl φ Base K Base K
36 1 nnnn0d φ Base K 0
37 hashclb Base K V Base K Fin Base K 0
38 33 37 syl φ Base K Fin Base K 0
39 36 38 mpbird φ Base K Fin
40 f1finf1o Base K Base K Base K Fin x Base K P mulGrp K x : Base K 1-1 Base K x Base K P mulGrp K x : Base K 1-1 onto Base K
41 35 39 40 syl2anc φ x Base K P mulGrp K x : Base K 1-1 Base K x Base K P mulGrp K x : Base K 1-1 onto Base K
42 32 41 mpbid φ x Base K P mulGrp K x : Base K 1-1 onto Base K
43 31 42 jca φ x Base K P mulGrp K x K RingHom K x Base K P mulGrp K x : Base K 1-1 onto Base K
44 25 25 isrim x Base K P mulGrp K x K RingIso K x Base K P mulGrp K x K RingHom K x Base K P mulGrp K x : Base K 1-1 onto Base K
45 43 44 sylibr φ x Base K P mulGrp K x K RingIso K
46 45 adantr φ m mulGrp K PrimRoots R x Base K P mulGrp K x K RingIso K
47 simpr φ m mulGrp K PrimRoots R m mulGrp K PrimRoots R
48 13 adantr φ m mulGrp K PrimRoots R b 1 A b gcd N = 1
49 16 oveq2i R mulGrp S X = R mulGrp S var 1 /N
50 49 oveq1i R mulGrp S X - S 1 S = R mulGrp S var 1 /N - S 1 S
51 50 sneqi R mulGrp S X - S 1 S = R mulGrp S var 1 /N - S 1 S
52 51 fveq2i RSpan S R mulGrp S X - S 1 S = RSpan S R mulGrp S var 1 /N - S 1 S
53 15 52 eqtri L = RSpan S R mulGrp S var 1 /N - S 1 S
54 12 adantr φ m mulGrp K PrimRoots R a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
55 17 2 18 19 20 21 22 23 9 24 46 47 48 14 53 16 54 aks5lem6 φ m mulGrp K PrimRoots R N = P P pCnt N
56 55 adantr φ m mulGrp K PrimRoots R m mulGrp K PrimRoots R N = P P pCnt N
57 eqid mulGrp K 𝑠 Unit K = mulGrp K 𝑠 Unit K
58 3 flddrngd φ K DivRing
59 eqid Unit K = Unit K
60 eqid 0 K = 0 K
61 25 59 60 isdrng K DivRing K Ring Unit K = Base K 0 K
62 61 biimpi K DivRing K Ring Unit K = Base K 0 K
63 58 62 syl φ K Ring Unit K = Base K 0 K
64 63 simprd φ Unit K = Base K 0 K
65 64 fveq2d φ Unit K = Base K 0 K
66 63 simpld φ K Ring
67 ringgrp K Ring K Grp
68 66 67 syl φ K Grp
69 25 60 grpidcl K Grp 0 K Base K
70 68 69 syl φ 0 K Base K
71 hashdifsn Base K Fin 0 K Base K Base K 0 K = Base K 1
72 39 70 71 syl2anc φ Base K 0 K = Base K 1
73 65 72 eqtr2d φ Base K 1 = Unit K
74 eqid mulGrp K = mulGrp K
75 74 25 mgpbas Base K = Base mulGrp K
76 75 eqcomi Base mulGrp K = Base K
77 76 59 unitss Unit K Base mulGrp K
78 77 a1i φ Unit K Base mulGrp K
79 eqid Base mulGrp K = Base mulGrp K
80 57 79 ressbas2 Unit K Base mulGrp K Unit K = Base mulGrp K 𝑠 Unit K
81 78 80 syl φ Unit K = Base mulGrp K 𝑠 Unit K
82 81 fveq2d φ Unit K = Base mulGrp K 𝑠 Unit K
83 73 82 eqtrd φ Base K 1 = Base mulGrp K 𝑠 Unit K
84 11 83 breqtrd φ R Base mulGrp K 𝑠 Unit K
85 57 29 39 5 84 unitscyglem5 φ mulGrp K PrimRoots R
86 n0rex mulGrp K PrimRoots R m mulGrp K PrimRoots R m mulGrp K PrimRoots R
87 85 86 syl φ m mulGrp K PrimRoots R m mulGrp K PrimRoots R
88 56 87 r19.29a φ N = P P pCnt N