Step |
Hyp |
Ref |
Expression |
1 |
|
fldhmf1.1 |
|
2 |
|
fldhmf1.2 |
|
3 |
|
fldhmf1.3 |
|
4 |
|
fldhmf1.4 |
|
5 |
|
fldhmf1.5 |
|
6 |
4 5
|
rhmf |
|
7 |
3 6
|
syl |
|
8 |
3
|
ad4antr |
|
9 |
|
rhmghm |
|
10 |
8 9
|
syl |
|
11 |
|
simp-4r |
|
12 |
|
isfld |
|
13 |
1 12
|
sylib |
|
14 |
13
|
simpld |
|
15 |
14
|
ad4antr |
|
16 |
|
drnggrp |
|
17 |
15 16
|
syl |
|
18 |
|
simpllr |
|
19 |
|
eqid |
|
20 |
4 19
|
grpinvcl |
|
21 |
17 18 20
|
syl2anc |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
4 22 23
|
ghmlin |
|
25 |
10 11 21 24
|
syl3anc |
|
26 |
|
eqid |
|
27 |
4 19 26
|
ghminv |
|
28 |
10 18 27
|
syl2anc |
|
29 |
28
|
oveq2d |
|
30 |
|
simpr |
|
31 |
30
|
oveq1d |
|
32 |
2
|
ad3antrrr |
|
33 |
|
isfld |
|
34 |
32 33
|
sylib |
|
35 |
34
|
simpld |
|
36 |
35
|
adantr |
|
37 |
|
drngring |
|
38 |
36 37
|
syl |
|
39 |
38
|
ringgrpd |
|
40 |
8 6
|
syl |
|
41 |
40 18
|
ffvelcdmd |
|
42 |
|
eqid |
|
43 |
5 23 42 26
|
grprinv |
|
44 |
39 41 43
|
syl2anc |
|
45 |
31 44
|
eqtrd |
|
46 |
29 45
|
eqtrd |
|
47 |
25 46
|
eqtrd |
|
48 |
47
|
oveq1d |
|
49 |
4 22
|
grpcl |
|
50 |
17 11 21 49
|
syl3anc |
|
51 |
4 19
|
grpinvinv |
|
52 |
17 18 51
|
syl2anc |
|
53 |
|
simplr |
|
54 |
53
|
necomd |
|
55 |
52 54
|
eqnetrd |
|
56 |
|
eqid |
|
57 |
4 22 56 19
|
grpinvid2 |
|
58 |
57
|
necon3bid |
|
59 |
17 21 11 58
|
syl3anc |
|
60 |
55 59
|
mpbid |
|
61 |
50 60
|
jca |
|
62 |
|
eqid |
|
63 |
4 62 56
|
drngunit |
|
64 |
15 63
|
syl |
|
65 |
61 64
|
mpbird |
|
66 |
|
rhmunitinv |
|
67 |
8 65 66
|
syl2anc |
|
68 |
|
elrhmunit |
|
69 |
8 65 68
|
syl2anc |
|
70 |
|
eqid |
|
71 |
|
eqid |
|
72 |
70 71
|
unitinvcl |
|
73 |
38 69 72
|
syl2anc |
|
74 |
5 70 42
|
drngunit |
|
75 |
36 74
|
syl |
|
76 |
75
|
biimpd |
|
77 |
73 76
|
mpd |
|
78 |
77
|
simpld |
|
79 |
67 78
|
eqeltrd |
|
80 |
38 79
|
jca |
|
81 |
|
eqid |
|
82 |
5 81 42
|
ringlz |
|
83 |
80 82
|
syl |
|
84 |
48 83
|
eqtrd |
|
85 |
84
|
eqcomd |
|
86 |
13
|
simprd |
|
87 |
86
|
crngringd |
|
88 |
87
|
ad4antr |
|
89 |
|
eqid |
|
90 |
62 89
|
unitinvcl |
|
91 |
88 65 90
|
syl2anc |
|
92 |
|
eqid |
|
93 |
92 62
|
unitcl |
|
94 |
4
|
eqcomi |
|
95 |
93 94
|
eleqtrdi |
|
96 |
91 95
|
syl |
|
97 |
|
eqid |
|
98 |
4 97 81
|
rhmmul |
|
99 |
8 50 96 98
|
syl3anc |
|
100 |
99
|
eqcomd |
|
101 |
|
drngring |
|
102 |
15 101
|
syl |
|
103 |
|
eqid |
|
104 |
62 89 97 103
|
unitrinv |
|
105 |
102 65 104
|
syl2anc |
|
106 |
105
|
fveq2d |
|
107 |
|
eqid |
|
108 |
103 107
|
rhm1 |
|
109 |
8 108
|
syl |
|
110 |
106 109
|
eqtrd |
|
111 |
85 100 110
|
3eqtrd |
|
112 |
42 107
|
drngunz |
|
113 |
35 112
|
syl |
|
114 |
113
|
necomd |
|
115 |
114
|
adantr |
|
116 |
115
|
neneqd |
|
117 |
111 116
|
pm2.65da |
|
118 |
117
|
neqned |
|
119 |
118
|
ex |
|
120 |
119
|
ralrimiva |
|
121 |
120
|
ralrimiva |
|
122 |
7 121
|
jca |
|
123 |
|
dff14a |
|
124 |
122 123
|
sylibr |
|