Metamath Proof Explorer


Theorem fldhmf1

Description: A field homomorphism is injective. This follows immediately from the definition of the ring homomorphism that sends the multiplicative identity to the multiplicative identity. (Contributed by metakunt, 7-Jan-2025)

Ref Expression
Hypotheses fldhmf1.1 φ K Field
fldhmf1.2 φ L Field
fldhmf1.3 φ F K RingHom L
fldhmf1.4 A = Base K
fldhmf1.5 B = Base L
Assertion fldhmf1 φ F : A 1-1 B

Proof

Step Hyp Ref Expression
1 fldhmf1.1 φ K Field
2 fldhmf1.2 φ L Field
3 fldhmf1.3 φ F K RingHom L
4 fldhmf1.4 A = Base K
5 fldhmf1.5 B = Base L
6 4 5 rhmf F K RingHom L F : A B
7 3 6 syl φ F : A B
8 3 ad4antr φ a A b A a b F a = F b F K RingHom L
9 rhmghm F K RingHom L F K GrpHom L
10 8 9 syl φ a A b A a b F a = F b F K GrpHom L
11 simp-4r φ a A b A a b F a = F b a A
12 isfld K Field K DivRing K CRing
13 1 12 sylib φ K DivRing K CRing
14 13 simpld φ K DivRing
15 14 ad4antr φ a A b A a b F a = F b K DivRing
16 drnggrp K DivRing K Grp
17 15 16 syl φ a A b A a b F a = F b K Grp
18 simpllr φ a A b A a b F a = F b b A
19 eqid inv g K = inv g K
20 4 19 grpinvcl K Grp b A inv g K b A
21 17 18 20 syl2anc φ a A b A a b F a = F b inv g K b A
22 eqid + K = + K
23 eqid + L = + L
24 4 22 23 ghmlin F K GrpHom L a A inv g K b A F a + K inv g K b = F a + L F inv g K b
25 10 11 21 24 syl3anc φ a A b A a b F a = F b F a + K inv g K b = F a + L F inv g K b
26 eqid inv g L = inv g L
27 4 19 26 ghminv F K GrpHom L b A F inv g K b = inv g L F b
28 10 18 27 syl2anc φ a A b A a b F a = F b F inv g K b = inv g L F b
29 28 oveq2d φ a A b A a b F a = F b F a + L F inv g K b = F a + L inv g L F b
30 simpr φ a A b A a b F a = F b F a = F b
31 30 oveq1d φ a A b A a b F a = F b F a + L inv g L F b = F b + L inv g L F b
32 2 ad3antrrr φ a A b A a b L Field
33 isfld L Field L DivRing L CRing
34 32 33 sylib φ a A b A a b L DivRing L CRing
35 34 simpld φ a A b A a b L DivRing
36 35 adantr φ a A b A a b F a = F b L DivRing
37 drngring L DivRing L Ring
38 36 37 syl φ a A b A a b F a = F b L Ring
39 38 ringgrpd φ a A b A a b F a = F b L Grp
40 8 6 syl φ a A b A a b F a = F b F : A B
41 40 18 ffvelcdmd φ a A b A a b F a = F b F b B
42 eqid 0 L = 0 L
43 5 23 42 26 grprinv L Grp F b B F b + L inv g L F b = 0 L
44 39 41 43 syl2anc φ a A b A a b F a = F b F b + L inv g L F b = 0 L
45 31 44 eqtrd φ a A b A a b F a = F b F a + L inv g L F b = 0 L
46 29 45 eqtrd φ a A b A a b F a = F b F a + L F inv g K b = 0 L
47 25 46 eqtrd φ a A b A a b F a = F b F a + K inv g K b = 0 L
48 47 oveq1d φ a A b A a b F a = F b F a + K inv g K b L F inv r K a + K inv g K b = 0 L L F inv r K a + K inv g K b
49 4 22 grpcl K Grp a A inv g K b A a + K inv g K b A
50 17 11 21 49 syl3anc φ a A b A a b F a = F b a + K inv g K b A
51 4 19 grpinvinv K Grp b A inv g K inv g K b = b
52 17 18 51 syl2anc φ a A b A a b F a = F b inv g K inv g K b = b
53 simplr φ a A b A a b F a = F b a b
54 53 necomd φ a A b A a b F a = F b b a
55 52 54 eqnetrd φ a A b A a b F a = F b inv g K inv g K b a
56 eqid 0 K = 0 K
57 4 22 56 19 grpinvid2 K Grp inv g K b A a A inv g K inv g K b = a a + K inv g K b = 0 K
58 57 necon3bid K Grp inv g K b A a A inv g K inv g K b a a + K inv g K b 0 K
59 17 21 11 58 syl3anc φ a A b A a b F a = F b inv g K inv g K b a a + K inv g K b 0 K
60 55 59 mpbid φ a A b A a b F a = F b a + K inv g K b 0 K
61 50 60 jca φ a A b A a b F a = F b a + K inv g K b A a + K inv g K b 0 K
62 eqid Unit K = Unit K
63 4 62 56 drngunit K DivRing a + K inv g K b Unit K a + K inv g K b A a + K inv g K b 0 K
64 15 63 syl φ a A b A a b F a = F b a + K inv g K b Unit K a + K inv g K b A a + K inv g K b 0 K
65 61 64 mpbird φ a A b A a b F a = F b a + K inv g K b Unit K
66 rhmunitinv F K RingHom L a + K inv g K b Unit K F inv r K a + K inv g K b = inv r L F a + K inv g K b
67 8 65 66 syl2anc φ a A b A a b F a = F b F inv r K a + K inv g K b = inv r L F a + K inv g K b
68 elrhmunit F K RingHom L a + K inv g K b Unit K F a + K inv g K b Unit L
69 8 65 68 syl2anc φ a A b A a b F a = F b F a + K inv g K b Unit L
70 eqid Unit L = Unit L
71 eqid inv r L = inv r L
72 70 71 unitinvcl L Ring F a + K inv g K b Unit L inv r L F a + K inv g K b Unit L
73 38 69 72 syl2anc φ a A b A a b F a = F b inv r L F a + K inv g K b Unit L
74 5 70 42 drngunit L DivRing inv r L F a + K inv g K b Unit L inv r L F a + K inv g K b B inv r L F a + K inv g K b 0 L
75 36 74 syl φ a A b A a b F a = F b inv r L F a + K inv g K b Unit L inv r L F a + K inv g K b B inv r L F a + K inv g K b 0 L
76 75 biimpd φ a A b A a b F a = F b inv r L F a + K inv g K b Unit L inv r L F a + K inv g K b B inv r L F a + K inv g K b 0 L
77 73 76 mpd φ a A b A a b F a = F b inv r L F a + K inv g K b B inv r L F a + K inv g K b 0 L
78 77 simpld φ a A b A a b F a = F b inv r L F a + K inv g K b B
79 67 78 eqeltrd φ a A b A a b F a = F b F inv r K a + K inv g K b B
80 38 79 jca φ a A b A a b F a = F b L Ring F inv r K a + K inv g K b B
81 eqid L = L
82 5 81 42 ringlz L Ring F inv r K a + K inv g K b B 0 L L F inv r K a + K inv g K b = 0 L
83 80 82 syl φ a A b A a b F a = F b 0 L L F inv r K a + K inv g K b = 0 L
84 48 83 eqtrd φ a A b A a b F a = F b F a + K inv g K b L F inv r K a + K inv g K b = 0 L
85 84 eqcomd φ a A b A a b F a = F b 0 L = F a + K inv g K b L F inv r K a + K inv g K b
86 13 simprd φ K CRing
87 86 crngringd φ K Ring
88 87 ad4antr φ a A b A a b F a = F b K Ring
89 eqid inv r K = inv r K
90 62 89 unitinvcl K Ring a + K inv g K b Unit K inv r K a + K inv g K b Unit K
91 88 65 90 syl2anc φ a A b A a b F a = F b inv r K a + K inv g K b Unit K
92 eqid Base K = Base K
93 92 62 unitcl inv r K a + K inv g K b Unit K inv r K a + K inv g K b Base K
94 4 eqcomi Base K = A
95 93 94 eleqtrdi inv r K a + K inv g K b Unit K inv r K a + K inv g K b A
96 91 95 syl φ a A b A a b F a = F b inv r K a + K inv g K b A
97 eqid K = K
98 4 97 81 rhmmul F K RingHom L a + K inv g K b A inv r K a + K inv g K b A F a + K inv g K b K inv r K a + K inv g K b = F a + K inv g K b L F inv r K a + K inv g K b
99 8 50 96 98 syl3anc φ a A b A a b F a = F b F a + K inv g K b K inv r K a + K inv g K b = F a + K inv g K b L F inv r K a + K inv g K b
100 99 eqcomd φ a A b A a b F a = F b F a + K inv g K b L F inv r K a + K inv g K b = F a + K inv g K b K inv r K a + K inv g K b
101 drngring K DivRing K Ring
102 15 101 syl φ a A b A a b F a = F b K Ring
103 eqid 1 K = 1 K
104 62 89 97 103 unitrinv K Ring a + K inv g K b Unit K a + K inv g K b K inv r K a + K inv g K b = 1 K
105 102 65 104 syl2anc φ a A b A a b F a = F b a + K inv g K b K inv r K a + K inv g K b = 1 K
106 105 fveq2d φ a A b A a b F a = F b F a + K inv g K b K inv r K a + K inv g K b = F 1 K
107 eqid 1 L = 1 L
108 103 107 rhm1 F K RingHom L F 1 K = 1 L
109 8 108 syl φ a A b A a b F a = F b F 1 K = 1 L
110 106 109 eqtrd φ a A b A a b F a = F b F a + K inv g K b K inv r K a + K inv g K b = 1 L
111 85 100 110 3eqtrd φ a A b A a b F a = F b 0 L = 1 L
112 42 107 drngunz L DivRing 1 L 0 L
113 35 112 syl φ a A b A a b 1 L 0 L
114 113 necomd φ a A b A a b 0 L 1 L
115 114 adantr φ a A b A a b F a = F b 0 L 1 L
116 115 neneqd φ a A b A a b F a = F b ¬ 0 L = 1 L
117 111 116 pm2.65da φ a A b A a b ¬ F a = F b
118 117 neqned φ a A b A a b F a F b
119 118 ex φ a A b A a b F a F b
120 119 ralrimiva φ a A b A a b F a F b
121 120 ralrimiva φ a A b A a b F a F b
122 7 121 jca φ F : A B a A b A a b F a F b
123 dff14a F : A 1-1 B F : A B a A b A a b F a F b
124 122 123 sylibr φ F : A 1-1 B