Step |
Hyp |
Ref |
Expression |
1 |
|
fldhmf1.1 |
|- ( ph -> K e. Field ) |
2 |
|
fldhmf1.2 |
|- ( ph -> L e. Field ) |
3 |
|
fldhmf1.3 |
|- ( ph -> F e. ( K RingHom L ) ) |
4 |
|
fldhmf1.4 |
|- A = ( Base ` K ) |
5 |
|
fldhmf1.5 |
|- B = ( Base ` L ) |
6 |
4 5
|
rhmf |
|- ( F e. ( K RingHom L ) -> F : A --> B ) |
7 |
3 6
|
syl |
|- ( ph -> F : A --> B ) |
8 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> F e. ( K RingHom L ) ) |
9 |
|
rhmghm |
|- ( F e. ( K RingHom L ) -> F e. ( K GrpHom L ) ) |
10 |
8 9
|
syl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> F e. ( K GrpHom L ) ) |
11 |
|
simp-4r |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> a e. A ) |
12 |
|
isfld |
|- ( K e. Field <-> ( K e. DivRing /\ K e. CRing ) ) |
13 |
1 12
|
sylib |
|- ( ph -> ( K e. DivRing /\ K e. CRing ) ) |
14 |
13
|
simpld |
|- ( ph -> K e. DivRing ) |
15 |
14
|
ad4antr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> K e. DivRing ) |
16 |
|
drnggrp |
|- ( K e. DivRing -> K e. Grp ) |
17 |
15 16
|
syl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> K e. Grp ) |
18 |
|
simpllr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> b e. A ) |
19 |
|
eqid |
|- ( invg ` K ) = ( invg ` K ) |
20 |
4 19
|
grpinvcl |
|- ( ( K e. Grp /\ b e. A ) -> ( ( invg ` K ) ` b ) e. A ) |
21 |
17 18 20
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( invg ` K ) ` b ) e. A ) |
22 |
|
eqid |
|- ( +g ` K ) = ( +g ` K ) |
23 |
|
eqid |
|- ( +g ` L ) = ( +g ` L ) |
24 |
4 22 23
|
ghmlin |
|- ( ( F e. ( K GrpHom L ) /\ a e. A /\ ( ( invg ` K ) ` b ) e. A ) -> ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) = ( ( F ` a ) ( +g ` L ) ( F ` ( ( invg ` K ) ` b ) ) ) ) |
25 |
10 11 21 24
|
syl3anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) = ( ( F ` a ) ( +g ` L ) ( F ` ( ( invg ` K ) ` b ) ) ) ) |
26 |
|
eqid |
|- ( invg ` L ) = ( invg ` L ) |
27 |
4 19 26
|
ghminv |
|- ( ( F e. ( K GrpHom L ) /\ b e. A ) -> ( F ` ( ( invg ` K ) ` b ) ) = ( ( invg ` L ) ` ( F ` b ) ) ) |
28 |
10 18 27
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( ( invg ` K ) ` b ) ) = ( ( invg ` L ) ` ( F ` b ) ) ) |
29 |
28
|
oveq2d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( F ` a ) ( +g ` L ) ( F ` ( ( invg ` K ) ` b ) ) ) = ( ( F ` a ) ( +g ` L ) ( ( invg ` L ) ` ( F ` b ) ) ) ) |
30 |
|
simpr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` a ) = ( F ` b ) ) |
31 |
30
|
oveq1d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( F ` a ) ( +g ` L ) ( ( invg ` L ) ` ( F ` b ) ) ) = ( ( F ` b ) ( +g ` L ) ( ( invg ` L ) ` ( F ` b ) ) ) ) |
32 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) -> L e. Field ) |
33 |
|
isfld |
|- ( L e. Field <-> ( L e. DivRing /\ L e. CRing ) ) |
34 |
32 33
|
sylib |
|- ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) -> ( L e. DivRing /\ L e. CRing ) ) |
35 |
34
|
simpld |
|- ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) -> L e. DivRing ) |
36 |
35
|
adantr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> L e. DivRing ) |
37 |
|
drngring |
|- ( L e. DivRing -> L e. Ring ) |
38 |
36 37
|
syl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> L e. Ring ) |
39 |
38
|
ringgrpd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> L e. Grp ) |
40 |
8 6
|
syl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> F : A --> B ) |
41 |
40 18
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` b ) e. B ) |
42 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
43 |
5 23 42 26
|
grprinv |
|- ( ( L e. Grp /\ ( F ` b ) e. B ) -> ( ( F ` b ) ( +g ` L ) ( ( invg ` L ) ` ( F ` b ) ) ) = ( 0g ` L ) ) |
44 |
39 41 43
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( F ` b ) ( +g ` L ) ( ( invg ` L ) ` ( F ` b ) ) ) = ( 0g ` L ) ) |
45 |
31 44
|
eqtrd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( F ` a ) ( +g ` L ) ( ( invg ` L ) ` ( F ` b ) ) ) = ( 0g ` L ) ) |
46 |
29 45
|
eqtrd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( F ` a ) ( +g ` L ) ( F ` ( ( invg ` K ) ` b ) ) ) = ( 0g ` L ) ) |
47 |
25 46
|
eqtrd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) = ( 0g ` L ) ) |
48 |
47
|
oveq1d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ( .r ` L ) ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) = ( ( 0g ` L ) ( .r ` L ) ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) ) |
49 |
4 22
|
grpcl |
|- ( ( K e. Grp /\ a e. A /\ ( ( invg ` K ) ` b ) e. A ) -> ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. A ) |
50 |
17 11 21 49
|
syl3anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. A ) |
51 |
4 19
|
grpinvinv |
|- ( ( K e. Grp /\ b e. A ) -> ( ( invg ` K ) ` ( ( invg ` K ) ` b ) ) = b ) |
52 |
17 18 51
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( invg ` K ) ` ( ( invg ` K ) ` b ) ) = b ) |
53 |
|
simplr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> a =/= b ) |
54 |
53
|
necomd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> b =/= a ) |
55 |
52 54
|
eqnetrd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( invg ` K ) ` ( ( invg ` K ) ` b ) ) =/= a ) |
56 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
57 |
4 22 56 19
|
grpinvid2 |
|- ( ( K e. Grp /\ ( ( invg ` K ) ` b ) e. A /\ a e. A ) -> ( ( ( invg ` K ) ` ( ( invg ` K ) ` b ) ) = a <-> ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) = ( 0g ` K ) ) ) |
58 |
57
|
necon3bid |
|- ( ( K e. Grp /\ ( ( invg ` K ) ` b ) e. A /\ a e. A ) -> ( ( ( invg ` K ) ` ( ( invg ` K ) ` b ) ) =/= a <-> ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) =/= ( 0g ` K ) ) ) |
59 |
17 21 11 58
|
syl3anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( ( invg ` K ) ` ( ( invg ` K ) ` b ) ) =/= a <-> ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) =/= ( 0g ` K ) ) ) |
60 |
55 59
|
mpbid |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) =/= ( 0g ` K ) ) |
61 |
50 60
|
jca |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. A /\ ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) =/= ( 0g ` K ) ) ) |
62 |
|
eqid |
|- ( Unit ` K ) = ( Unit ` K ) |
63 |
4 62 56
|
drngunit |
|- ( K e. DivRing -> ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. ( Unit ` K ) <-> ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. A /\ ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) =/= ( 0g ` K ) ) ) ) |
64 |
15 63
|
syl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. ( Unit ` K ) <-> ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. A /\ ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) =/= ( 0g ` K ) ) ) ) |
65 |
61 64
|
mpbird |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. ( Unit ` K ) ) |
66 |
|
rhmunitinv |
|- ( ( F e. ( K RingHom L ) /\ ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. ( Unit ` K ) ) -> ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) = ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) |
67 |
8 65 66
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) = ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) |
68 |
|
elrhmunit |
|- ( ( F e. ( K RingHom L ) /\ ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. ( Unit ` K ) ) -> ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. ( Unit ` L ) ) |
69 |
8 65 68
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. ( Unit ` L ) ) |
70 |
|
eqid |
|- ( Unit ` L ) = ( Unit ` L ) |
71 |
|
eqid |
|- ( invr ` L ) = ( invr ` L ) |
72 |
70 71
|
unitinvcl |
|- ( ( L e. Ring /\ ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. ( Unit ` L ) ) -> ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. ( Unit ` L ) ) |
73 |
38 69 72
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. ( Unit ` L ) ) |
74 |
5 70 42
|
drngunit |
|- ( L e. DivRing -> ( ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. ( Unit ` L ) <-> ( ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. B /\ ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) =/= ( 0g ` L ) ) ) ) |
75 |
36 74
|
syl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. ( Unit ` L ) <-> ( ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. B /\ ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) =/= ( 0g ` L ) ) ) ) |
76 |
75
|
biimpd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. ( Unit ` L ) -> ( ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. B /\ ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) =/= ( 0g ` L ) ) ) ) |
77 |
73 76
|
mpd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. B /\ ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) =/= ( 0g ` L ) ) ) |
78 |
77
|
simpld |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( invr ` L ) ` ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. B ) |
79 |
67 78
|
eqeltrd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. B ) |
80 |
38 79
|
jca |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( L e. Ring /\ ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. B ) ) |
81 |
|
eqid |
|- ( .r ` L ) = ( .r ` L ) |
82 |
5 81 42
|
ringlz |
|- ( ( L e. Ring /\ ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) e. B ) -> ( ( 0g ` L ) ( .r ` L ) ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) = ( 0g ` L ) ) |
83 |
80 82
|
syl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( 0g ` L ) ( .r ` L ) ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) = ( 0g ` L ) ) |
84 |
48 83
|
eqtrd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ( .r ` L ) ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) = ( 0g ` L ) ) |
85 |
84
|
eqcomd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( 0g ` L ) = ( ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ( .r ` L ) ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) ) |
86 |
13
|
simprd |
|- ( ph -> K e. CRing ) |
87 |
86
|
crngringd |
|- ( ph -> K e. Ring ) |
88 |
87
|
ad4antr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> K e. Ring ) |
89 |
|
eqid |
|- ( invr ` K ) = ( invr ` K ) |
90 |
62 89
|
unitinvcl |
|- ( ( K e. Ring /\ ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. ( Unit ` K ) ) -> ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. ( Unit ` K ) ) |
91 |
88 65 90
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. ( Unit ` K ) ) |
92 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
93 |
92 62
|
unitcl |
|- ( ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. ( Unit ` K ) -> ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. ( Base ` K ) ) |
94 |
4
|
eqcomi |
|- ( Base ` K ) = A |
95 |
93 94
|
eleqtrdi |
|- ( ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. ( Unit ` K ) -> ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. A ) |
96 |
91 95
|
syl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. A ) |
97 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
98 |
4 97 81
|
rhmmul |
|- ( ( F e. ( K RingHom L ) /\ ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. A /\ ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) e. A ) -> ( F ` ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ( .r ` K ) ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) = ( ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ( .r ` L ) ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) ) |
99 |
8 50 96 98
|
syl3anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ( .r ` K ) ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) = ( ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ( .r ` L ) ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) ) |
100 |
99
|
eqcomd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( F ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ( .r ` L ) ( F ` ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) = ( F ` ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ( .r ` K ) ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) ) |
101 |
|
drngring |
|- ( K e. DivRing -> K e. Ring ) |
102 |
15 101
|
syl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> K e. Ring ) |
103 |
|
eqid |
|- ( 1r ` K ) = ( 1r ` K ) |
104 |
62 89 97 103
|
unitrinv |
|- ( ( K e. Ring /\ ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) e. ( Unit ` K ) ) -> ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ( .r ` K ) ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) = ( 1r ` K ) ) |
105 |
102 65 104
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ( .r ` K ) ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) = ( 1r ` K ) ) |
106 |
105
|
fveq2d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ( .r ` K ) ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) = ( F ` ( 1r ` K ) ) ) |
107 |
|
eqid |
|- ( 1r ` L ) = ( 1r ` L ) |
108 |
103 107
|
rhm1 |
|- ( F e. ( K RingHom L ) -> ( F ` ( 1r ` K ) ) = ( 1r ` L ) ) |
109 |
8 108
|
syl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( 1r ` K ) ) = ( 1r ` L ) ) |
110 |
106 109
|
eqtrd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ( .r ` K ) ( ( invr ` K ) ` ( a ( +g ` K ) ( ( invg ` K ) ` b ) ) ) ) ) = ( 1r ` L ) ) |
111 |
85 100 110
|
3eqtrd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( 0g ` L ) = ( 1r ` L ) ) |
112 |
42 107
|
drngunz |
|- ( L e. DivRing -> ( 1r ` L ) =/= ( 0g ` L ) ) |
113 |
35 112
|
syl |
|- ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) -> ( 1r ` L ) =/= ( 0g ` L ) ) |
114 |
113
|
necomd |
|- ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) -> ( 0g ` L ) =/= ( 1r ` L ) ) |
115 |
114
|
adantr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> ( 0g ` L ) =/= ( 1r ` L ) ) |
116 |
115
|
neneqd |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) /\ ( F ` a ) = ( F ` b ) ) -> -. ( 0g ` L ) = ( 1r ` L ) ) |
117 |
111 116
|
pm2.65da |
|- ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) -> -. ( F ` a ) = ( F ` b ) ) |
118 |
117
|
neqned |
|- ( ( ( ( ph /\ a e. A ) /\ b e. A ) /\ a =/= b ) -> ( F ` a ) =/= ( F ` b ) ) |
119 |
118
|
ex |
|- ( ( ( ph /\ a e. A ) /\ b e. A ) -> ( a =/= b -> ( F ` a ) =/= ( F ` b ) ) ) |
120 |
119
|
ralrimiva |
|- ( ( ph /\ a e. A ) -> A. b e. A ( a =/= b -> ( F ` a ) =/= ( F ` b ) ) ) |
121 |
120
|
ralrimiva |
|- ( ph -> A. a e. A A. b e. A ( a =/= b -> ( F ` a ) =/= ( F ` b ) ) ) |
122 |
7 121
|
jca |
|- ( ph -> ( F : A --> B /\ A. a e. A A. b e. A ( a =/= b -> ( F ` a ) =/= ( F ` b ) ) ) ) |
123 |
|
dff14a |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. a e. A A. b e. A ( a =/= b -> ( F ` a ) =/= ( F ` b ) ) ) ) |
124 |
122 123
|
sylibr |
|- ( ph -> F : A -1-1-> B ) |