| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldhmf1.1 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 2 |
|
fldhmf1.2 |
⊢ ( 𝜑 → 𝐿 ∈ Field ) |
| 3 |
|
fldhmf1.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) ) |
| 4 |
|
fldhmf1.4 |
⊢ 𝐴 = ( Base ‘ 𝐾 ) |
| 5 |
|
fldhmf1.5 |
⊢ 𝐵 = ( Base ‘ 𝐿 ) |
| 6 |
4 5
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 |
3
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) ) |
| 9 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) → 𝐹 ∈ ( 𝐾 GrpHom 𝐿 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝐹 ∈ ( 𝐾 GrpHom 𝐿 ) ) |
| 11 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑎 ∈ 𝐴 ) |
| 12 |
|
isfld |
⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
| 13 |
1 12
|
sylib |
⊢ ( 𝜑 → ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
| 14 |
13
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
| 15 |
14
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝐾 ∈ DivRing ) |
| 16 |
|
drnggrp |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ Grp ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝐾 ∈ Grp ) |
| 18 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑏 ∈ 𝐴 ) |
| 19 |
|
eqid |
⊢ ( invg ‘ 𝐾 ) = ( invg ‘ 𝐾 ) |
| 20 |
4 19
|
grpinvcl |
⊢ ( ( 𝐾 ∈ Grp ∧ 𝑏 ∈ 𝐴 ) → ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ∈ 𝐴 ) |
| 21 |
17 18 20
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ∈ 𝐴 ) |
| 22 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
| 23 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
| 24 |
4 22 23
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝐾 GrpHom 𝐿 ) ∧ 𝑎 ∈ 𝐴 ∧ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( 𝐹 ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) |
| 25 |
10 11 21 24
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( 𝐹 ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) |
| 26 |
|
eqid |
⊢ ( invg ‘ 𝐿 ) = ( invg ‘ 𝐿 ) |
| 27 |
4 19 26
|
ghminv |
⊢ ( ( 𝐹 ∈ ( 𝐾 GrpHom 𝐿 ) ∧ 𝑏 ∈ 𝐴 ) → ( 𝐹 ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) = ( ( invg ‘ 𝐿 ) ‘ ( 𝐹 ‘ 𝑏 ) ) ) |
| 28 |
10 18 27
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) = ( ( invg ‘ 𝐿 ) ‘ ( 𝐹 ‘ 𝑏 ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( 𝐹 ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( ( invg ‘ 𝐿 ) ‘ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 30 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 31 |
30
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( ( invg ‘ 𝐿 ) ‘ ( 𝐹 ‘ 𝑏 ) ) ) = ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝐿 ) ( ( invg ‘ 𝐿 ) ‘ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 32 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) → 𝐿 ∈ Field ) |
| 33 |
|
isfld |
⊢ ( 𝐿 ∈ Field ↔ ( 𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing ) ) |
| 34 |
32 33
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing ) ) |
| 35 |
34
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) → 𝐿 ∈ DivRing ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝐿 ∈ DivRing ) |
| 37 |
|
drngring |
⊢ ( 𝐿 ∈ DivRing → 𝐿 ∈ Ring ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝐿 ∈ Ring ) |
| 39 |
38
|
ringgrpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝐿 ∈ Grp ) |
| 40 |
8 6
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 41 |
40 18
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐵 ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
| 43 |
5 23 42 26
|
grprinv |
⊢ ( ( 𝐿 ∈ Grp ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝐿 ) ( ( invg ‘ 𝐿 ) ‘ ( 𝐹 ‘ 𝑏 ) ) ) = ( 0g ‘ 𝐿 ) ) |
| 44 |
39 41 43
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝐿 ) ( ( invg ‘ 𝐿 ) ‘ ( 𝐹 ‘ 𝑏 ) ) ) = ( 0g ‘ 𝐿 ) ) |
| 45 |
31 44
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( ( invg ‘ 𝐿 ) ‘ ( 𝐹 ‘ 𝑏 ) ) ) = ( 0g ‘ 𝐿 ) ) |
| 46 |
29 45
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( 𝐹 ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) = ( 0g ‘ 𝐿 ) ) |
| 47 |
25 46
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) = ( 0g ‘ 𝐿 ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( ( 0g ‘ 𝐿 ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) ) |
| 49 |
4 22
|
grpcl |
⊢ ( ( 𝐾 ∈ Grp ∧ 𝑎 ∈ 𝐴 ∧ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ∈ 𝐴 ) → ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 ) |
| 50 |
17 11 21 49
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 ) |
| 51 |
4 19
|
grpinvinv |
⊢ ( ( 𝐾 ∈ Grp ∧ 𝑏 ∈ 𝐴 ) → ( ( invg ‘ 𝐾 ) ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) = 𝑏 ) |
| 52 |
17 18 51
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( invg ‘ 𝐾 ) ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) = 𝑏 ) |
| 53 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑎 ≠ 𝑏 ) |
| 54 |
53
|
necomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑏 ≠ 𝑎 ) |
| 55 |
52 54
|
eqnetrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( invg ‘ 𝐾 ) ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ≠ 𝑎 ) |
| 56 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 57 |
4 22 56 19
|
grpinvid2 |
⊢ ( ( 𝐾 ∈ Grp ∧ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) → ( ( ( invg ‘ 𝐾 ) ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) = 𝑎 ↔ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 58 |
57
|
necon3bid |
⊢ ( ( 𝐾 ∈ Grp ∧ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) → ( ( ( invg ‘ 𝐾 ) ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ≠ 𝑎 ↔ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g ‘ 𝐾 ) ) ) |
| 59 |
17 21 11 58
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( ( invg ‘ 𝐾 ) ‘ ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ≠ 𝑎 ↔ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g ‘ 𝐾 ) ) ) |
| 60 |
55 59
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g ‘ 𝐾 ) ) |
| 61 |
50 60
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 ∧ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g ‘ 𝐾 ) ) ) |
| 62 |
|
eqid |
⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) |
| 63 |
4 62 56
|
drngunit |
⊢ ( 𝐾 ∈ DivRing → ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ↔ ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 ∧ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g ‘ 𝐾 ) ) ) ) |
| 64 |
15 63
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ↔ ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 ∧ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g ‘ 𝐾 ) ) ) ) |
| 65 |
61 64
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ) |
| 66 |
|
rhmunitinv |
⊢ ( ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) ∧ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) = ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) |
| 67 |
8 65 66
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) = ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) |
| 68 |
|
elrhmunit |
⊢ ( ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) ∧ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐿 ) ) |
| 69 |
8 65 68
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐿 ) ) |
| 70 |
|
eqid |
⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) |
| 71 |
|
eqid |
⊢ ( invr ‘ 𝐿 ) = ( invr ‘ 𝐿 ) |
| 72 |
70 71
|
unitinvcl |
⊢ ( ( 𝐿 ∈ Ring ∧ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐿 ) ) → ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ ( Unit ‘ 𝐿 ) ) |
| 73 |
38 69 72
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ ( Unit ‘ 𝐿 ) ) |
| 74 |
5 70 42
|
drngunit |
⊢ ( 𝐿 ∈ DivRing → ( ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ ( Unit ‘ 𝐿 ) ↔ ( ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ∧ ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ≠ ( 0g ‘ 𝐿 ) ) ) ) |
| 75 |
36 74
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ ( Unit ‘ 𝐿 ) ↔ ( ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ∧ ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ≠ ( 0g ‘ 𝐿 ) ) ) ) |
| 76 |
75
|
biimpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ ( Unit ‘ 𝐿 ) → ( ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ∧ ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ≠ ( 0g ‘ 𝐿 ) ) ) ) |
| 77 |
73 76
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ∧ ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ≠ ( 0g ‘ 𝐿 ) ) ) |
| 78 |
77
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( invr ‘ 𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ) |
| 79 |
67 78
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ) |
| 80 |
38 79
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐿 ∈ Ring ∧ ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ) ) |
| 81 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
| 82 |
5 81 42
|
ringlz |
⊢ ( ( 𝐿 ∈ Ring ∧ ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐿 ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 0g ‘ 𝐿 ) ) |
| 83 |
80 82
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 0g ‘ 𝐿 ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 0g ‘ 𝐿 ) ) |
| 84 |
48 83
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 0g ‘ 𝐿 ) ) |
| 85 |
84
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 0g ‘ 𝐿 ) = ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) ) |
| 86 |
13
|
simprd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
| 87 |
86
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
| 88 |
87
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝐾 ∈ Ring ) |
| 89 |
|
eqid |
⊢ ( invr ‘ 𝐾 ) = ( invr ‘ 𝐾 ) |
| 90 |
62 89
|
unitinvcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ) → ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐾 ) ) |
| 91 |
88 65 90
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐾 ) ) |
| 92 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 93 |
92 62
|
unitcl |
⊢ ( ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐾 ) → ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 94 |
4
|
eqcomi |
⊢ ( Base ‘ 𝐾 ) = 𝐴 |
| 95 |
93 94
|
eleqtrdi |
⊢ ( ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐾 ) → ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ 𝐴 ) |
| 96 |
91 95
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ 𝐴 ) |
| 97 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
| 98 |
4 97 81
|
rhmmul |
⊢ ( ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) ∧ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 ∧ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ( .r ‘ 𝐾 ) ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) ) |
| 99 |
8 50 96 98
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ( .r ‘ 𝐾 ) ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) ) |
| 100 |
99
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 𝐹 ‘ ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ( .r ‘ 𝐾 ) ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) ) |
| 101 |
|
drngring |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ Ring ) |
| 102 |
15 101
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝐾 ∈ Ring ) |
| 103 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
| 104 |
62 89 97 103
|
unitrinv |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ) → ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ( .r ‘ 𝐾 ) ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) = ( 1r ‘ 𝐾 ) ) |
| 105 |
102 65 104
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ( .r ‘ 𝐾 ) ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) = ( 1r ‘ 𝐾 ) ) |
| 106 |
105
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ( .r ‘ 𝐾 ) ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 𝐹 ‘ ( 1r ‘ 𝐾 ) ) ) |
| 107 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
| 108 |
103 107
|
rhm1 |
⊢ ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) → ( 𝐹 ‘ ( 1r ‘ 𝐾 ) ) = ( 1r ‘ 𝐿 ) ) |
| 109 |
8 108
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝐾 ) ) = ( 1r ‘ 𝐿 ) ) |
| 110 |
106 109
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ( .r ‘ 𝐾 ) ( ( invr ‘ 𝐾 ) ‘ ( 𝑎 ( +g ‘ 𝐾 ) ( ( invg ‘ 𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 1r ‘ 𝐿 ) ) |
| 111 |
85 100 110
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 0g ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) ) |
| 112 |
42 107
|
drngunz |
⊢ ( 𝐿 ∈ DivRing → ( 1r ‘ 𝐿 ) ≠ ( 0g ‘ 𝐿 ) ) |
| 113 |
35 112
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) → ( 1r ‘ 𝐿 ) ≠ ( 0g ‘ 𝐿 ) ) |
| 114 |
113
|
necomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) → ( 0g ‘ 𝐿 ) ≠ ( 1r ‘ 𝐿 ) ) |
| 115 |
114
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 0g ‘ 𝐿 ) ≠ ( 1r ‘ 𝐿 ) ) |
| 116 |
115
|
neneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ¬ ( 0g ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) ) |
| 117 |
111 116
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) → ¬ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 118 |
117
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝐹 ‘ 𝑎 ) ≠ ( 𝐹 ‘ 𝑏 ) ) |
| 119 |
118
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐴 ) → ( 𝑎 ≠ 𝑏 → ( 𝐹 ‘ 𝑎 ) ≠ ( 𝐹 ‘ 𝑏 ) ) ) |
| 120 |
119
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑏 ∈ 𝐴 ( 𝑎 ≠ 𝑏 → ( 𝐹 ‘ 𝑎 ) ≠ ( 𝐹 ‘ 𝑏 ) ) ) |
| 121 |
120
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ≠ 𝑏 → ( 𝐹 ‘ 𝑎 ) ≠ ( 𝐹 ‘ 𝑏 ) ) ) |
| 122 |
7 121
|
jca |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ≠ 𝑏 → ( 𝐹 ‘ 𝑎 ) ≠ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 123 |
|
dff14a |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ≠ 𝑏 → ( 𝐹 ‘ 𝑎 ) ≠ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 124 |
122 123
|
sylibr |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |