Metamath Proof Explorer


Theorem fldhmf1

Description: A field homomorphism is injective. This follows immediately from the definition of the ring homomorphism that sends the multiplicative identity to the multiplicative identity. (Contributed by metakunt, 7-Jan-2025)

Ref Expression
Hypotheses fldhmf1.1 ( 𝜑𝐾 ∈ Field )
fldhmf1.2 ( 𝜑𝐿 ∈ Field )
fldhmf1.3 ( 𝜑𝐹 ∈ ( 𝐾 RingHom 𝐿 ) )
fldhmf1.4 𝐴 = ( Base ‘ 𝐾 )
fldhmf1.5 𝐵 = ( Base ‘ 𝐿 )
Assertion fldhmf1 ( 𝜑𝐹 : 𝐴1-1𝐵 )

Proof

Step Hyp Ref Expression
1 fldhmf1.1 ( 𝜑𝐾 ∈ Field )
2 fldhmf1.2 ( 𝜑𝐿 ∈ Field )
3 fldhmf1.3 ( 𝜑𝐹 ∈ ( 𝐾 RingHom 𝐿 ) )
4 fldhmf1.4 𝐴 = ( Base ‘ 𝐾 )
5 fldhmf1.5 𝐵 = ( Base ‘ 𝐿 )
6 4 5 rhmf ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) → 𝐹 : 𝐴𝐵 )
7 3 6 syl ( 𝜑𝐹 : 𝐴𝐵 )
8 3 ad4antr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) )
9 rhmghm ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) → 𝐹 ∈ ( 𝐾 GrpHom 𝐿 ) )
10 8 9 syl ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝐹 ∈ ( 𝐾 GrpHom 𝐿 ) )
11 simp-4r ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝑎𝐴 )
12 isfld ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) )
13 1 12 sylib ( 𝜑 → ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) )
14 13 simpld ( 𝜑𝐾 ∈ DivRing )
15 14 ad4antr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝐾 ∈ DivRing )
16 drnggrp ( 𝐾 ∈ DivRing → 𝐾 ∈ Grp )
17 15 16 syl ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝐾 ∈ Grp )
18 simpllr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝑏𝐴 )
19 eqid ( invg𝐾 ) = ( invg𝐾 )
20 4 19 grpinvcl ( ( 𝐾 ∈ Grp ∧ 𝑏𝐴 ) → ( ( invg𝐾 ) ‘ 𝑏 ) ∈ 𝐴 )
21 17 18 20 syl2anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( invg𝐾 ) ‘ 𝑏 ) ∈ 𝐴 )
22 eqid ( +g𝐾 ) = ( +g𝐾 )
23 eqid ( +g𝐿 ) = ( +g𝐿 )
24 4 22 23 ghmlin ( ( 𝐹 ∈ ( 𝐾 GrpHom 𝐿 ) ∧ 𝑎𝐴 ∧ ( ( invg𝐾 ) ‘ 𝑏 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) = ( ( 𝐹𝑎 ) ( +g𝐿 ) ( 𝐹 ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) ) )
25 10 11 21 24 syl3anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) = ( ( 𝐹𝑎 ) ( +g𝐿 ) ( 𝐹 ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) ) )
26 eqid ( invg𝐿 ) = ( invg𝐿 )
27 4 19 26 ghminv ( ( 𝐹 ∈ ( 𝐾 GrpHom 𝐿 ) ∧ 𝑏𝐴 ) → ( 𝐹 ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) = ( ( invg𝐿 ) ‘ ( 𝐹𝑏 ) ) )
28 10 18 27 syl2anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹 ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) = ( ( invg𝐿 ) ‘ ( 𝐹𝑏 ) ) )
29 28 oveq2d ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝐹𝑎 ) ( +g𝐿 ) ( 𝐹 ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) ) = ( ( 𝐹𝑎 ) ( +g𝐿 ) ( ( invg𝐿 ) ‘ ( 𝐹𝑏 ) ) ) )
30 simpr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹𝑎 ) = ( 𝐹𝑏 ) )
31 30 oveq1d ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝐹𝑎 ) ( +g𝐿 ) ( ( invg𝐿 ) ‘ ( 𝐹𝑏 ) ) ) = ( ( 𝐹𝑏 ) ( +g𝐿 ) ( ( invg𝐿 ) ‘ ( 𝐹𝑏 ) ) ) )
32 2 ad3antrrr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) → 𝐿 ∈ Field )
33 isfld ( 𝐿 ∈ Field ↔ ( 𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing ) )
34 32 33 sylib ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) → ( 𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing ) )
35 34 simpld ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) → 𝐿 ∈ DivRing )
36 35 adantr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝐿 ∈ DivRing )
37 drngring ( 𝐿 ∈ DivRing → 𝐿 ∈ Ring )
38 36 37 syl ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝐿 ∈ Ring )
39 38 ringgrpd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝐿 ∈ Grp )
40 8 6 syl ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝐹 : 𝐴𝐵 )
41 40 18 ffvelcdmd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹𝑏 ) ∈ 𝐵 )
42 eqid ( 0g𝐿 ) = ( 0g𝐿 )
43 5 23 42 26 grprinv ( ( 𝐿 ∈ Grp ∧ ( 𝐹𝑏 ) ∈ 𝐵 ) → ( ( 𝐹𝑏 ) ( +g𝐿 ) ( ( invg𝐿 ) ‘ ( 𝐹𝑏 ) ) ) = ( 0g𝐿 ) )
44 39 41 43 syl2anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝐹𝑏 ) ( +g𝐿 ) ( ( invg𝐿 ) ‘ ( 𝐹𝑏 ) ) ) = ( 0g𝐿 ) )
45 31 44 eqtrd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝐹𝑎 ) ( +g𝐿 ) ( ( invg𝐿 ) ‘ ( 𝐹𝑏 ) ) ) = ( 0g𝐿 ) )
46 29 45 eqtrd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝐹𝑎 ) ( +g𝐿 ) ( 𝐹 ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) ) = ( 0g𝐿 ) )
47 25 46 eqtrd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) = ( 0g𝐿 ) )
48 47 oveq1d ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ( .r𝐿 ) ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( ( 0g𝐿 ) ( .r𝐿 ) ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) )
49 4 22 grpcl ( ( 𝐾 ∈ Grp ∧ 𝑎𝐴 ∧ ( ( invg𝐾 ) ‘ 𝑏 ) ∈ 𝐴 ) → ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 )
50 17 11 21 49 syl3anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 )
51 4 19 grpinvinv ( ( 𝐾 ∈ Grp ∧ 𝑏𝐴 ) → ( ( invg𝐾 ) ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) = 𝑏 )
52 17 18 51 syl2anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( invg𝐾 ) ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) = 𝑏 )
53 simplr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝑎𝑏 )
54 53 necomd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝑏𝑎 )
55 52 54 eqnetrd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( invg𝐾 ) ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) ≠ 𝑎 )
56 eqid ( 0g𝐾 ) = ( 0g𝐾 )
57 4 22 56 19 grpinvid2 ( ( 𝐾 ∈ Grp ∧ ( ( invg𝐾 ) ‘ 𝑏 ) ∈ 𝐴𝑎𝐴 ) → ( ( ( invg𝐾 ) ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) = 𝑎 ↔ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) = ( 0g𝐾 ) ) )
58 57 necon3bid ( ( 𝐾 ∈ Grp ∧ ( ( invg𝐾 ) ‘ 𝑏 ) ∈ 𝐴𝑎𝐴 ) → ( ( ( invg𝐾 ) ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) ≠ 𝑎 ↔ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g𝐾 ) ) )
59 17 21 11 58 syl3anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( ( invg𝐾 ) ‘ ( ( invg𝐾 ) ‘ 𝑏 ) ) ≠ 𝑎 ↔ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g𝐾 ) ) )
60 55 59 mpbid ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g𝐾 ) )
61 50 60 jca ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 ∧ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g𝐾 ) ) )
62 eqid ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 )
63 4 62 56 drngunit ( 𝐾 ∈ DivRing → ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ↔ ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 ∧ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g𝐾 ) ) ) )
64 15 63 syl ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ↔ ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 ∧ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ≠ ( 0g𝐾 ) ) ) )
65 61 64 mpbird ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) )
66 rhmunitinv ( ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) ∧ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ) → ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) = ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) )
67 8 65 66 syl2anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) = ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) )
68 elrhmunit ( ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) ∧ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐿 ) )
69 8 65 68 syl2anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐿 ) )
70 eqid ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 )
71 eqid ( invr𝐿 ) = ( invr𝐿 )
72 70 71 unitinvcl ( ( 𝐿 ∈ Ring ∧ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐿 ) ) → ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ ( Unit ‘ 𝐿 ) )
73 38 69 72 syl2anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ ( Unit ‘ 𝐿 ) )
74 5 70 42 drngunit ( 𝐿 ∈ DivRing → ( ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ ( Unit ‘ 𝐿 ) ↔ ( ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ∧ ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ≠ ( 0g𝐿 ) ) ) )
75 36 74 syl ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ ( Unit ‘ 𝐿 ) ↔ ( ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ∧ ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ≠ ( 0g𝐿 ) ) ) )
76 75 biimpd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ ( Unit ‘ 𝐿 ) → ( ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ∧ ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ≠ ( 0g𝐿 ) ) ) )
77 73 76 mpd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ∧ ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ≠ ( 0g𝐿 ) ) )
78 77 simpld ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( invr𝐿 ) ‘ ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 )
79 67 78 eqeltrd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 )
80 38 79 jca ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐿 ∈ Ring ∧ ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ) )
81 eqid ( .r𝐿 ) = ( .r𝐿 )
82 5 81 42 ringlz ( ( 𝐿 ∈ Ring ∧ ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ∈ 𝐵 ) → ( ( 0g𝐿 ) ( .r𝐿 ) ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 0g𝐿 ) )
83 80 82 syl ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 0g𝐿 ) ( .r𝐿 ) ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 0g𝐿 ) )
84 48 83 eqtrd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ( .r𝐿 ) ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 0g𝐿 ) )
85 84 eqcomd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 0g𝐿 ) = ( ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ( .r𝐿 ) ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) )
86 13 simprd ( 𝜑𝐾 ∈ CRing )
87 86 crngringd ( 𝜑𝐾 ∈ Ring )
88 87 ad4antr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝐾 ∈ Ring )
89 eqid ( invr𝐾 ) = ( invr𝐾 )
90 62 89 unitinvcl ( ( 𝐾 ∈ Ring ∧ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ) → ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐾 ) )
91 88 65 90 syl2anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐾 ) )
92 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
93 92 62 unitcl ( ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐾 ) → ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Base ‘ 𝐾 ) )
94 4 eqcomi ( Base ‘ 𝐾 ) = 𝐴
95 93 94 eleqtrdi ( ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ ( Unit ‘ 𝐾 ) → ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ 𝐴 )
96 91 95 syl ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ 𝐴 )
97 eqid ( .r𝐾 ) = ( .r𝐾 )
98 4 97 81 rhmmul ( ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) ∧ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ 𝐴 ∧ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ( .r𝐾 ) ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ( .r𝐿 ) ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) )
99 8 50 96 98 syl3anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹 ‘ ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ( .r𝐾 ) ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ( .r𝐿 ) ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) )
100 99 eqcomd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ( .r𝐿 ) ( 𝐹 ‘ ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 𝐹 ‘ ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ( .r𝐾 ) ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) )
101 drngring ( 𝐾 ∈ DivRing → 𝐾 ∈ Ring )
102 15 101 syl ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → 𝐾 ∈ Ring )
103 eqid ( 1r𝐾 ) = ( 1r𝐾 )
104 62 89 97 103 unitrinv ( ( 𝐾 ∈ Ring ∧ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ∈ ( Unit ‘ 𝐾 ) ) → ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ( .r𝐾 ) ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) = ( 1r𝐾 ) )
105 102 65 104 syl2anc ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ( .r𝐾 ) ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) = ( 1r𝐾 ) )
106 105 fveq2d ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹 ‘ ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ( .r𝐾 ) ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 𝐹 ‘ ( 1r𝐾 ) ) )
107 eqid ( 1r𝐿 ) = ( 1r𝐿 )
108 103 107 rhm1 ( 𝐹 ∈ ( 𝐾 RingHom 𝐿 ) → ( 𝐹 ‘ ( 1r𝐾 ) ) = ( 1r𝐿 ) )
109 8 108 syl ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹 ‘ ( 1r𝐾 ) ) = ( 1r𝐿 ) )
110 106 109 eqtrd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 𝐹 ‘ ( ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ( .r𝐾 ) ( ( invr𝐾 ) ‘ ( 𝑎 ( +g𝐾 ) ( ( invg𝐾 ) ‘ 𝑏 ) ) ) ) ) = ( 1r𝐿 ) )
111 85 100 110 3eqtrd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 0g𝐿 ) = ( 1r𝐿 ) )
112 42 107 drngunz ( 𝐿 ∈ DivRing → ( 1r𝐿 ) ≠ ( 0g𝐿 ) )
113 35 112 syl ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) → ( 1r𝐿 ) ≠ ( 0g𝐿 ) )
114 113 necomd ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) → ( 0g𝐿 ) ≠ ( 1r𝐿 ) )
115 114 adantr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ( 0g𝐿 ) ≠ ( 1r𝐿 ) )
116 115 neneqd ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ¬ ( 0g𝐿 ) = ( 1r𝐿 ) )
117 111 116 pm2.65da ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) → ¬ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) )
118 117 neqned ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) ∧ 𝑎𝑏 ) → ( 𝐹𝑎 ) ≠ ( 𝐹𝑏 ) )
119 118 ex ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑏𝐴 ) → ( 𝑎𝑏 → ( 𝐹𝑎 ) ≠ ( 𝐹𝑏 ) ) )
120 119 ralrimiva ( ( 𝜑𝑎𝐴 ) → ∀ 𝑏𝐴 ( 𝑎𝑏 → ( 𝐹𝑎 ) ≠ ( 𝐹𝑏 ) ) )
121 120 ralrimiva ( 𝜑 → ∀ 𝑎𝐴𝑏𝐴 ( 𝑎𝑏 → ( 𝐹𝑎 ) ≠ ( 𝐹𝑏 ) ) )
122 7 121 jca ( 𝜑 → ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑎𝐴𝑏𝐴 ( 𝑎𝑏 → ( 𝐹𝑎 ) ≠ ( 𝐹𝑏 ) ) ) )
123 dff14a ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑎𝐴𝑏𝐴 ( 𝑎𝑏 → ( 𝐹𝑎 ) ≠ ( 𝐹𝑏 ) ) ) )
124 122 123 sylibr ( 𝜑𝐹 : 𝐴1-1𝐵 )