Metamath Proof Explorer


Theorem aks5lem8

Description: Lemma for aks5. Clean up the conclusion. (Contributed by metakunt, 9-Aug-2025)

Ref Expression
Hypotheses aks5lem7.1 φ Base K
aks5lem7.2 P = chr K
aks5lem7.3 φ K Field
aks5lem7.4 φ P
aks5lem7.5 φ R
aks5lem7.6 φ N 3
aks5lem7.7 φ P N
aks5lem7.8 φ N gcd R = 1
aks5lem7.9 A = ϕ R log 2 N
aks5lem7.10 φ log 2 N 2 < od R N
aks5lem7.11 φ R Base K 1
aks5lem7.12 φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
aks5lem7.13 φ b 1 A b gcd N = 1
aks5lem7.14 S = Poly 1 /N
aks5lem7.15 L = RSpan S R mulGrp S X - S 1 S
aks5lem7.16 X = var 1 /N
Assertion aks5lem8 φ p n N = p n

Proof

Step Hyp Ref Expression
1 aks5lem7.1 φ Base K
2 aks5lem7.2 P = chr K
3 aks5lem7.3 φ K Field
4 aks5lem7.4 φ P
5 aks5lem7.5 φ R
6 aks5lem7.6 φ N 3
7 aks5lem7.7 φ P N
8 aks5lem7.8 φ N gcd R = 1
9 aks5lem7.9 A = ϕ R log 2 N
10 aks5lem7.10 φ log 2 N 2 < od R N
11 aks5lem7.11 φ R Base K 1
12 aks5lem7.12 φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
13 aks5lem7.13 φ b 1 A b gcd N = 1
14 aks5lem7.14 S = Poly 1 /N
15 aks5lem7.15 L = RSpan S R mulGrp S X - S 1 S
16 aks5lem7.16 X = var 1 /N
17 simpr φ p = P p = P
18 17 oveq1d φ p = P p n = P n
19 18 eqeq2d φ p = P N = p n N = P n
20 19 rexbidv φ p = P n N = p n n N = P n
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 aks5lem7 φ N = P P pCnt N
22 eluzelz N 3 N
23 6 22 syl φ N
24 0red φ 0
25 3re 3
26 25 a1i φ 3
27 23 zred φ N
28 3pos 0 < 3
29 28 a1i φ 0 < 3
30 eluzle N 3 3 N
31 6 30 syl φ 3 N
32 24 26 27 29 31 ltletrd φ 0 < N
33 23 32 jca φ N 0 < N
34 elnnz N N 0 < N
35 33 34 sylibr φ N
36 pcprmpw P N n 0 N = P n N = P P pCnt N
37 4 35 36 syl2anc φ n 0 N = P n N = P P pCnt N
38 21 37 mpbird φ n 0 N = P n
39 simprl φ n 0 N = P n n 0
40 39 nn0zd φ n 0 N = P n n
41 simpr φ n 0 N = P n 0 < n 0 < n
42 39 nn0red φ n 0 N = P n n
43 0red φ n 0 N = P n 0
44 42 43 lenltd φ n 0 N = P n n 0 ¬ 0 < n
45 44 bicomd φ n 0 N = P n ¬ 0 < n n 0
46 45 biimpd φ n 0 N = P n ¬ 0 < n n 0
47 46 imp φ n 0 N = P n ¬ 0 < n n 0
48 simpr φ n 0 N = P n n 0 n 0
49 39 adantr φ n 0 N = P n n 0 n 0
50 nn0le0eq0 n 0 n 0 n = 0
51 50 bicomd n 0 n = 0 n 0
52 49 51 syl φ n 0 N = P n n 0 n = 0 n 0
53 48 52 mpbird φ n 0 N = P n n 0 n = 0
54 simplrr φ n 0 N = P n n = 0 N = P n
55 simpr φ n 0 N = P n n = 0 n = 0
56 55 oveq2d φ n 0 N = P n n = 0 P n = P 0
57 4 ad2antrr φ n 0 N = P n n = 0 P
58 prmnn P P
59 57 58 syl φ n 0 N = P n n = 0 P
60 59 nncnd φ n 0 N = P n n = 0 P
61 60 exp0d φ n 0 N = P n n = 0 P 0 = 1
62 56 61 eqtrd φ n 0 N = P n n = 0 P n = 1
63 54 62 eqtrd φ n 0 N = P n n = 0 N = 1
64 1red φ n 0 N = P n n = 0 1
65 1red φ 1
66 35 nnred φ N
67 1lt3 1 < 3
68 67 a1i φ 1 < 3
69 65 26 66 68 31 ltletrd φ 1 < N
70 69 adantr φ n 0 N = P n 1 < N
71 70 adantr φ n 0 N = P n n = 0 1 < N
72 64 71 ltned φ n 0 N = P n n = 0 1 N
73 72 necomd φ n 0 N = P n n = 0 N 1
74 73 neneqd φ n 0 N = P n n = 0 ¬ N = 1
75 63 74 pm2.21dd φ n 0 N = P n n = 0 0 < n
76 75 ex φ n 0 N = P n n = 0 0 < n
77 76 adantr φ n 0 N = P n n 0 n = 0 0 < n
78 53 77 mpd φ n 0 N = P n n 0 0 < n
79 78 ex φ n 0 N = P n n 0 0 < n
80 79 adantr φ n 0 N = P n ¬ 0 < n n 0 0 < n
81 47 80 mpd φ n 0 N = P n ¬ 0 < n 0 < n
82 41 81 pm2.61dan φ n 0 N = P n 0 < n
83 40 82 jca φ n 0 N = P n n 0 < n
84 elnnz n n 0 < n
85 83 84 sylibr φ n 0 N = P n n
86 simprr φ n 0 N = P n N = P n
87 38 85 86 reximssdv φ n N = P n
88 4 20 87 rspcedvd φ p n N = p n