Metamath Proof Explorer


Axiom ax-exfinfld

Description: Existence axiom for finite fields, eventually we want to construct them. (Contributed by metakunt, 13-Jul-2025)

Ref Expression
Assertion ax-exfinfld p n k Field Base k = p n chr k = p

Detailed syntax breakdown

Step Hyp Ref Expression
0 vp setvar p
1 cprime class
2 vn setvar n
3 cn class
4 vk setvar k
5 cfield class Field
6 chash class .
7 cbs class Base
8 4 cv setvar k
9 8 7 cfv class Base k
10 9 6 cfv class Base k
11 0 cv setvar p
12 cexp class ^
13 2 cv setvar n
14 11 13 12 co class p n
15 10 14 wceq wff Base k = p n
16 cchr class chr
17 8 16 cfv class chr k
18 17 11 wceq wff chr k = p
19 15 18 wa wff Base k = p n chr k = p
20 19 4 5 wrex wff k Field Base k = p n chr k = p
21 20 2 3 wral wff n k Field Base k = p n chr k = p
22 21 0 1 wral wff p n k Field Base k = p n chr k = p