Metamath Proof Explorer


Axiom ax-exfinfld

Description: Existence axiom for finite fields, eventually we want to construct them. (Contributed by metakunt, 13-Jul-2025)

Ref Expression
Assertion ax-exfinfld
|- A. p e. Prime A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vp
 |-  p
1 cprime
 |-  Prime
2 vn
 |-  n
3 cn
 |-  NN
4 vk
 |-  k
5 cfield
 |-  Field
6 chash
 |-  #
7 cbs
 |-  Base
8 4 cv
 |-  k
9 8 7 cfv
 |-  ( Base ` k )
10 9 6 cfv
 |-  ( # ` ( Base ` k ) )
11 0 cv
 |-  p
12 cexp
 |-  ^
13 2 cv
 |-  n
14 11 13 12 co
 |-  ( p ^ n )
15 10 14 wceq
 |-  ( # ` ( Base ` k ) ) = ( p ^ n )
16 cchr
 |-  chr
17 8 16 cfv
 |-  ( chr ` k )
18 17 11 wceq
 |-  ( chr ` k ) = p
19 15 18 wa
 |-  ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p )
20 19 4 5 wrex
 |-  E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p )
21 20 2 3 wral
 |-  A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p )
22 21 0 1 wral
 |-  A. p e. Prime A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p )