Description: Existence axiom for finite fields, eventually we want to construct them. (Contributed by metakunt, 13-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-exfinfld | |- A. p e. Prime A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vp | |- p |
|
| 1 | cprime | |- Prime |
|
| 2 | vn | |- n |
|
| 3 | cn | |- NN |
|
| 4 | vk | |- k |
|
| 5 | cfield | |- Field |
|
| 6 | chash | |- # |
|
| 7 | cbs | |- Base |
|
| 8 | 4 | cv | |- k |
| 9 | 8 7 | cfv | |- ( Base ` k ) |
| 10 | 9 6 | cfv | |- ( # ` ( Base ` k ) ) |
| 11 | 0 | cv | |- p |
| 12 | cexp | |- ^ |
|
| 13 | 2 | cv | |- n |
| 14 | 11 13 12 | co | |- ( p ^ n ) |
| 15 | 10 14 | wceq | |- ( # ` ( Base ` k ) ) = ( p ^ n ) |
| 16 | cchr | |- chr |
|
| 17 | 8 16 | cfv | |- ( chr ` k ) |
| 18 | 17 11 | wceq | |- ( chr ` k ) = p |
| 19 | 15 18 | wa | |- ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p ) |
| 20 | 19 4 5 | wrex | |- E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p ) |
| 21 | 20 2 3 | wral | |- A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p ) |
| 22 | 21 0 1 | wral | |- A. p e. Prime A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p ) |