| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exfinfldd.1 |
|- ( ph -> P e. Prime ) |
| 2 |
|
exfinfldd.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
oveq2 |
|- ( n = N -> ( P ^ n ) = ( P ^ N ) ) |
| 4 |
3
|
eqeq2d |
|- ( n = N -> ( ( # ` ( Base ` k ) ) = ( P ^ n ) <-> ( # ` ( Base ` k ) ) = ( P ^ N ) ) ) |
| 5 |
4
|
anbi1d |
|- ( n = N -> ( ( ( # ` ( Base ` k ) ) = ( P ^ n ) /\ ( chr ` k ) = P ) <-> ( ( # ` ( Base ` k ) ) = ( P ^ N ) /\ ( chr ` k ) = P ) ) ) |
| 6 |
5
|
rexbidv |
|- ( n = N -> ( E. k e. Field ( ( # ` ( Base ` k ) ) = ( P ^ n ) /\ ( chr ` k ) = P ) <-> E. k e. Field ( ( # ` ( Base ` k ) ) = ( P ^ N ) /\ ( chr ` k ) = P ) ) ) |
| 7 |
|
oveq1 |
|- ( p = P -> ( p ^ n ) = ( P ^ n ) ) |
| 8 |
7
|
eqeq2d |
|- ( p = P -> ( ( # ` ( Base ` k ) ) = ( p ^ n ) <-> ( # ` ( Base ` k ) ) = ( P ^ n ) ) ) |
| 9 |
|
eqeq2 |
|- ( p = P -> ( ( chr ` k ) = p <-> ( chr ` k ) = P ) ) |
| 10 |
8 9
|
anbi12d |
|- ( p = P -> ( ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p ) <-> ( ( # ` ( Base ` k ) ) = ( P ^ n ) /\ ( chr ` k ) = P ) ) ) |
| 11 |
10
|
rexbidv |
|- ( p = P -> ( E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p ) <-> E. k e. Field ( ( # ` ( Base ` k ) ) = ( P ^ n ) /\ ( chr ` k ) = P ) ) ) |
| 12 |
11
|
ralbidv |
|- ( p = P -> ( A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p ) <-> A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( P ^ n ) /\ ( chr ` k ) = P ) ) ) |
| 13 |
|
ax-exfinfld |
|- A. p e. Prime A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p ) |
| 14 |
13
|
a1i |
|- ( ph -> A. p e. Prime A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( p ^ n ) /\ ( chr ` k ) = p ) ) |
| 15 |
12 14 1
|
rspcdva |
|- ( ph -> A. n e. NN E. k e. Field ( ( # ` ( Base ` k ) ) = ( P ^ n ) /\ ( chr ` k ) = P ) ) |
| 16 |
6 15 2
|
rspcdva |
|- ( ph -> E. k e. Field ( ( # ` ( Base ` k ) ) = ( P ^ N ) /\ ( chr ` k ) = P ) ) |