Step |
Hyp |
Ref |
Expression |
1 |
|
aks5.1 |
|- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
2 |
|
aks5.2 |
|- X = ( var1 ` ( Z/nZ ` N ) ) |
3 |
|
aks5.3 |
|- S = ( Poly1 ` ( Z/nZ ` N ) ) |
4 |
|
aks5.4 |
|- L = ( ( RSpan ` S ) ` { ( ( R ( .g ` ( mulGrp ` S ) ) X ) ( -g ` S ) ( 1r ` S ) ) } ) |
5 |
|
aks5.5 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
6 |
|
aks5.6 |
|- ( ph -> R e. NN ) |
7 |
|
aks5.7 |
|- ( ph -> ( N gcd R ) = 1 ) |
8 |
|
aks5.8 |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
9 |
|
aks5.9 |
|- ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) |
10 |
|
aks5.10 |
|- ( ph -> A. a e. ( 1 ... A ) ( a gcd N ) = 1 ) |
11 |
|
simprl |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) ) |
12 |
|
simplr |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> q e. Prime ) |
13 |
12
|
ad2antrr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> q e. Prime ) |
14 |
|
prmnn |
|- ( q e. Prime -> q e. NN ) |
15 |
13 14
|
syl |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> q e. NN ) |
16 |
6
|
ad2antrr |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> R e. NN ) |
17 |
12 14
|
syl |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> q e. NN ) |
18 |
17
|
nnzd |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> q e. ZZ ) |
19 |
16
|
nnzd |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> R e. ZZ ) |
20 |
18 19
|
gcdcomd |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> ( q gcd R ) = ( R gcd q ) ) |
21 |
5
|
ad2antrr |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> N e. ( ZZ>= ` 3 ) ) |
22 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
23 |
21 22
|
syl |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> N e. ZZ ) |
24 |
19 18 23
|
3jca |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> ( R e. ZZ /\ q e. ZZ /\ N e. ZZ ) ) |
25 |
19 23
|
gcdcomd |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> ( R gcd N ) = ( N gcd R ) ) |
26 |
7
|
ad2antrr |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> ( N gcd R ) = 1 ) |
27 |
25 26
|
eqtrd |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> ( R gcd N ) = 1 ) |
28 |
|
simpr |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> q || N ) |
29 |
27 28
|
jca |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> ( ( R gcd N ) = 1 /\ q || N ) ) |
30 |
|
rpdvds |
|- ( ( ( R e. ZZ /\ q e. ZZ /\ N e. ZZ ) /\ ( ( R gcd N ) = 1 /\ q || N ) ) -> ( R gcd q ) = 1 ) |
31 |
24 29 30
|
syl2anc |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> ( R gcd q ) = 1 ) |
32 |
20 31
|
eqtrd |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> ( q gcd R ) = 1 ) |
33 |
|
odzcl |
|- ( ( R e. NN /\ q e. ZZ /\ ( q gcd R ) = 1 ) -> ( ( odZ ` R ) ` q ) e. NN ) |
34 |
16 18 32 33
|
syl3anc |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> ( ( odZ ` R ) ` q ) e. NN ) |
35 |
34
|
ad2antrr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( ( odZ ` R ) ` q ) e. NN ) |
36 |
35
|
nnnn0d |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( ( odZ ` R ) ` q ) e. NN0 ) |
37 |
15 36
|
nnexpcld |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( q ^ ( ( odZ ` R ) ` q ) ) e. NN ) |
38 |
11 37
|
eqeltrd |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( # ` ( Base ` k ) ) e. NN ) |
39 |
|
eqid |
|- ( chr ` k ) = ( chr ` k ) |
40 |
|
simplr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> k e. Field ) |
41 |
|
simprr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( chr ` k ) = q ) |
42 |
41 13
|
eqeltrd |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( chr ` k ) e. Prime ) |
43 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> R e. NN ) |
44 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> N e. ( ZZ>= ` 3 ) ) |
45 |
|
simpllr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> q || N ) |
46 |
41 45
|
eqbrtrd |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( chr ` k ) || N ) |
47 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( N gcd R ) = 1 ) |
48 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
49 |
15
|
nnzd |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> q e. ZZ ) |
50 |
32
|
ad2antrr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( q gcd R ) = 1 ) |
51 |
|
odzid |
|- ( ( R e. NN /\ q e. ZZ /\ ( q gcd R ) = 1 ) -> R || ( ( q ^ ( ( odZ ` R ) ` q ) ) - 1 ) ) |
52 |
43 49 50 51
|
syl3anc |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> R || ( ( q ^ ( ( odZ ` R ) ` q ) ) - 1 ) ) |
53 |
11
|
eqcomd |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( q ^ ( ( odZ ` R ) ` q ) ) = ( # ` ( Base ` k ) ) ) |
54 |
53
|
oveq1d |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> ( ( q ^ ( ( odZ ` R ) ` q ) ) - 1 ) = ( ( # ` ( Base ` k ) ) - 1 ) ) |
55 |
52 54
|
breqtrd |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> R || ( ( # ` ( Base ` k ) ) - 1 ) ) |
56 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) |
57 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> A. a e. ( 1 ... A ) ( a gcd N ) = 1 ) |
58 |
38 39 40 42 43 44 46 47 1 48 55 56 57 3 4 2
|
aks5lem8 |
|- ( ( ( ( ( ph /\ q e. Prime ) /\ q || N ) /\ k e. Field ) /\ ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) -> E. p e. Prime E. n e. NN N = ( p ^ n ) ) |
59 |
12 34
|
exfinfldd |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> E. k e. Field ( ( # ` ( Base ` k ) ) = ( q ^ ( ( odZ ` R ) ` q ) ) /\ ( chr ` k ) = q ) ) |
60 |
58 59
|
r19.29a |
|- ( ( ( ph /\ q e. Prime ) /\ q || N ) -> E. p e. Prime E. n e. NN N = ( p ^ n ) ) |
61 |
|
uzuzle23 |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) |
62 |
5 61
|
syl |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
63 |
|
exprmfct |
|- ( N e. ( ZZ>= ` 2 ) -> E. q e. Prime q || N ) |
64 |
62 63
|
syl |
|- ( ph -> E. q e. Prime q || N ) |
65 |
60 64
|
r19.29a |
|- ( ph -> E. p e. Prime E. n e. NN N = ( p ^ n ) ) |