Step |
Hyp |
Ref |
Expression |
1 |
|
aks5.1 |
⊢ 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
2 |
|
aks5.2 |
⊢ 𝑋 = ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
3 |
|
aks5.3 |
⊢ 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
4 |
|
aks5.4 |
⊢ 𝐿 = ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) } ) |
5 |
|
aks5.5 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
6 |
|
aks5.6 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
7 |
|
aks5.7 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
8 |
|
aks5.8 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
9 |
|
aks5.9 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
10 |
|
aks5.10 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) ( 𝑎 gcd 𝑁 ) = 1 ) |
11 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ) |
12 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → 𝑞 ∈ ℙ ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → 𝑞 ∈ ℙ ) |
14 |
|
prmnn |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ ) |
15 |
13 14
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → 𝑞 ∈ ℕ ) |
16 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → 𝑅 ∈ ℕ ) |
17 |
12 14
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → 𝑞 ∈ ℕ ) |
18 |
17
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → 𝑞 ∈ ℤ ) |
19 |
16
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → 𝑅 ∈ ℤ ) |
20 |
18 19
|
gcdcomd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ( 𝑞 gcd 𝑅 ) = ( 𝑅 gcd 𝑞 ) ) |
21 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
22 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → 𝑁 ∈ ℤ ) |
24 |
19 18 23
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ( 𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
25 |
19 23
|
gcdcomd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ( 𝑅 gcd 𝑁 ) = ( 𝑁 gcd 𝑅 ) ) |
26 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
27 |
25 26
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ( 𝑅 gcd 𝑁 ) = 1 ) |
28 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → 𝑞 ∥ 𝑁 ) |
29 |
27 28
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ( ( 𝑅 gcd 𝑁 ) = 1 ∧ 𝑞 ∥ 𝑁 ) ) |
30 |
|
rpdvds |
⊢ ( ( ( 𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑅 gcd 𝑁 ) = 1 ∧ 𝑞 ∥ 𝑁 ) ) → ( 𝑅 gcd 𝑞 ) = 1 ) |
31 |
24 29 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ( 𝑅 gcd 𝑞 ) = 1 ) |
32 |
20 31
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ( 𝑞 gcd 𝑅 ) = 1 ) |
33 |
|
odzcl |
⊢ ( ( 𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ ( 𝑞 gcd 𝑅 ) = 1 ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ∈ ℕ ) |
34 |
16 18 32 33
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ∈ ℕ ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ∈ ℕ ) |
36 |
35
|
nnnn0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ∈ ℕ0 ) |
37 |
15 36
|
nnexpcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∈ ℕ ) |
38 |
11 37
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( ♯ ‘ ( Base ‘ 𝑘 ) ) ∈ ℕ ) |
39 |
|
eqid |
⊢ ( chr ‘ 𝑘 ) = ( chr ‘ 𝑘 ) |
40 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → 𝑘 ∈ Field ) |
41 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( chr ‘ 𝑘 ) = 𝑞 ) |
42 |
41 13
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( chr ‘ 𝑘 ) ∈ ℙ ) |
43 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → 𝑅 ∈ ℕ ) |
44 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
45 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → 𝑞 ∥ 𝑁 ) |
46 |
41 45
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( chr ‘ 𝑘 ) ∥ 𝑁 ) |
47 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
48 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
49 |
15
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → 𝑞 ∈ ℤ ) |
50 |
32
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( 𝑞 gcd 𝑅 ) = 1 ) |
51 |
|
odzid |
⊢ ( ( 𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ ( 𝑞 gcd 𝑅 ) = 1 ) → 𝑅 ∥ ( ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) − 1 ) ) |
52 |
43 49 50 51
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → 𝑅 ∥ ( ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) − 1 ) ) |
53 |
11
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) = ( ♯ ‘ ( Base ‘ 𝑘 ) ) ) |
54 |
53
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ( ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) − 1 ) = ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) − 1 ) ) |
55 |
52 54
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → 𝑅 ∥ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) − 1 ) ) |
56 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g ‘ 𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) ) |
57 |
10
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) ( 𝑎 gcd 𝑁 ) = 1 ) |
58 |
38 39 40 42 43 44 46 47 1 48 55 56 57 3 4 2
|
aks5lem8 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) ∧ 𝑘 ∈ Field ) ∧ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ 𝑁 = ( 𝑝 ↑ 𝑛 ) ) |
59 |
12 34
|
exfinfldd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ∃ 𝑘 ∈ Field ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑞 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑞 ) ) ∧ ( chr ‘ 𝑘 ) = 𝑞 ) ) |
60 |
58 59
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ 𝑁 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ 𝑁 = ( 𝑝 ↑ 𝑛 ) ) |
61 |
|
uzuzle23 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
62 |
5 61
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
63 |
|
exprmfct |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑞 ∈ ℙ 𝑞 ∥ 𝑁 ) |
64 |
62 63
|
syl |
⊢ ( 𝜑 → ∃ 𝑞 ∈ ℙ 𝑞 ∥ 𝑁 ) |
65 |
60 64
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ 𝑁 = ( 𝑝 ↑ 𝑛 ) ) |