Metamath Proof Explorer


Theorem aks5lem8

Description: Lemma for aks5. Clean up the conclusion. (Contributed by metakunt, 9-Aug-2025)

Ref Expression
Hypotheses aks5lem7.1 ( 𝜑 → ( ♯ ‘ ( Base ‘ 𝐾 ) ) ∈ ℕ )
aks5lem7.2 𝑃 = ( chr ‘ 𝐾 )
aks5lem7.3 ( 𝜑𝐾 ∈ Field )
aks5lem7.4 ( 𝜑𝑃 ∈ ℙ )
aks5lem7.5 ( 𝜑𝑅 ∈ ℕ )
aks5lem7.6 ( 𝜑𝑁 ∈ ( ℤ ‘ 3 ) )
aks5lem7.7 ( 𝜑𝑃𝑁 )
aks5lem7.8 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
aks5lem7.9 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) )
aks5lem7.10 ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( od𝑅 ) ‘ 𝑁 ) )
aks5lem7.11 ( 𝜑𝑅 ∥ ( ( ♯ ‘ ( Base ‘ 𝐾 ) ) − 1 ) )
aks5lem7.12 ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) )
aks5lem7.13 ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 )
aks5lem7.14 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) )
aks5lem7.15 𝐿 = ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g𝑆 ) ( 1r𝑆 ) ) } )
aks5lem7.16 𝑋 = ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) )
Assertion aks5lem8 ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ 𝑁 = ( 𝑝𝑛 ) )

Proof

Step Hyp Ref Expression
1 aks5lem7.1 ( 𝜑 → ( ♯ ‘ ( Base ‘ 𝐾 ) ) ∈ ℕ )
2 aks5lem7.2 𝑃 = ( chr ‘ 𝐾 )
3 aks5lem7.3 ( 𝜑𝐾 ∈ Field )
4 aks5lem7.4 ( 𝜑𝑃 ∈ ℙ )
5 aks5lem7.5 ( 𝜑𝑅 ∈ ℕ )
6 aks5lem7.6 ( 𝜑𝑁 ∈ ( ℤ ‘ 3 ) )
7 aks5lem7.7 ( 𝜑𝑃𝑁 )
8 aks5lem7.8 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
9 aks5lem7.9 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) )
10 aks5lem7.10 ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( od𝑅 ) ‘ 𝑁 ) )
11 aks5lem7.11 ( 𝜑𝑅 ∥ ( ( ♯ ‘ ( Base ‘ 𝐾 ) ) − 1 ) )
12 aks5lem7.12 ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) [ ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) ( 𝑋 ( +g𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ) ] ( 𝑆 ~QG 𝐿 ) = [ ( ( 𝑁 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( +g𝑆 ) ( ( ℤRHom ‘ 𝑆 ) ‘ 𝑎 ) ) ] ( 𝑆 ~QG 𝐿 ) )
13 aks5lem7.13 ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 )
14 aks5lem7.14 𝑆 = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑁 ) )
15 aks5lem7.15 𝐿 = ( ( RSpan ‘ 𝑆 ) ‘ { ( ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑋 ) ( -g𝑆 ) ( 1r𝑆 ) ) } )
16 aks5lem7.16 𝑋 = ( var1 ‘ ( ℤ/nℤ ‘ 𝑁 ) )
17 simpr ( ( 𝜑𝑝 = 𝑃 ) → 𝑝 = 𝑃 )
18 17 oveq1d ( ( 𝜑𝑝 = 𝑃 ) → ( 𝑝𝑛 ) = ( 𝑃𝑛 ) )
19 18 eqeq2d ( ( 𝜑𝑝 = 𝑃 ) → ( 𝑁 = ( 𝑝𝑛 ) ↔ 𝑁 = ( 𝑃𝑛 ) ) )
20 19 rexbidv ( ( 𝜑𝑝 = 𝑃 ) → ( ∃ 𝑛 ∈ ℕ 𝑁 = ( 𝑝𝑛 ) ↔ ∃ 𝑛 ∈ ℕ 𝑁 = ( 𝑃𝑛 ) ) )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 aks5lem7 ( 𝜑𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) )
22 eluzelz ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℤ )
23 6 22 syl ( 𝜑𝑁 ∈ ℤ )
24 0red ( 𝜑 → 0 ∈ ℝ )
25 3re 3 ∈ ℝ
26 25 a1i ( 𝜑 → 3 ∈ ℝ )
27 23 zred ( 𝜑𝑁 ∈ ℝ )
28 3pos 0 < 3
29 28 a1i ( 𝜑 → 0 < 3 )
30 eluzle ( 𝑁 ∈ ( ℤ ‘ 3 ) → 3 ≤ 𝑁 )
31 6 30 syl ( 𝜑 → 3 ≤ 𝑁 )
32 24 26 27 29 31 ltletrd ( 𝜑 → 0 < 𝑁 )
33 23 32 jca ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) )
34 elnnz ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) )
35 33 34 sylibr ( 𝜑𝑁 ∈ ℕ )
36 pcprmpw ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝑁 = ( 𝑃𝑛 ) ↔ 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
37 4 35 36 syl2anc ( 𝜑 → ( ∃ 𝑛 ∈ ℕ0 𝑁 = ( 𝑃𝑛 ) ↔ 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
38 21 37 mpbird ( 𝜑 → ∃ 𝑛 ∈ ℕ0 𝑁 = ( 𝑃𝑛 ) )
39 simprl ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → 𝑛 ∈ ℕ0 )
40 39 nn0zd ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → 𝑛 ∈ ℤ )
41 simpr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 0 < 𝑛 ) → 0 < 𝑛 )
42 39 nn0red ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → 𝑛 ∈ ℝ )
43 0red ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → 0 ∈ ℝ )
44 42 43 lenltd ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → ( 𝑛 ≤ 0 ↔ ¬ 0 < 𝑛 ) )
45 44 bicomd ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → ( ¬ 0 < 𝑛𝑛 ≤ 0 ) )
46 45 biimpd ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → ( ¬ 0 < 𝑛𝑛 ≤ 0 ) )
47 46 imp ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ ¬ 0 < 𝑛 ) → 𝑛 ≤ 0 )
48 simpr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 ≤ 0 ) → 𝑛 ≤ 0 )
49 39 adantr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 ≤ 0 ) → 𝑛 ∈ ℕ0 )
50 nn0le0eq0 ( 𝑛 ∈ ℕ0 → ( 𝑛 ≤ 0 ↔ 𝑛 = 0 ) )
51 50 bicomd ( 𝑛 ∈ ℕ0 → ( 𝑛 = 0 ↔ 𝑛 ≤ 0 ) )
52 49 51 syl ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 ≤ 0 ) → ( 𝑛 = 0 ↔ 𝑛 ≤ 0 ) )
53 48 52 mpbird ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 ≤ 0 ) → 𝑛 = 0 )
54 simplrr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 𝑁 = ( 𝑃𝑛 ) )
55 simpr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 𝑛 = 0 )
56 55 oveq2d ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → ( 𝑃𝑛 ) = ( 𝑃 ↑ 0 ) )
57 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 𝑃 ∈ ℙ )
58 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
59 57 58 syl ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 𝑃 ∈ ℕ )
60 59 nncnd ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 𝑃 ∈ ℂ )
61 60 exp0d ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → ( 𝑃 ↑ 0 ) = 1 )
62 56 61 eqtrd ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → ( 𝑃𝑛 ) = 1 )
63 54 62 eqtrd ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 𝑁 = 1 )
64 1red ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 1 ∈ ℝ )
65 1red ( 𝜑 → 1 ∈ ℝ )
66 35 nnred ( 𝜑𝑁 ∈ ℝ )
67 1lt3 1 < 3
68 67 a1i ( 𝜑 → 1 < 3 )
69 65 26 66 68 31 ltletrd ( 𝜑 → 1 < 𝑁 )
70 69 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → 1 < 𝑁 )
71 70 adantr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 1 < 𝑁 )
72 64 71 ltned ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 1 ≠ 𝑁 )
73 72 necomd ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 𝑁 ≠ 1 )
74 73 neneqd ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → ¬ 𝑁 = 1 )
75 63 74 pm2.21dd ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 = 0 ) → 0 < 𝑛 )
76 75 ex ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → ( 𝑛 = 0 → 0 < 𝑛 ) )
77 76 adantr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 ≤ 0 ) → ( 𝑛 = 0 → 0 < 𝑛 ) )
78 53 77 mpd ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ 𝑛 ≤ 0 ) → 0 < 𝑛 )
79 78 ex ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → ( 𝑛 ≤ 0 → 0 < 𝑛 ) )
80 79 adantr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ ¬ 0 < 𝑛 ) → ( 𝑛 ≤ 0 → 0 < 𝑛 ) )
81 47 80 mpd ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) ∧ ¬ 0 < 𝑛 ) → 0 < 𝑛 )
82 41 81 pm2.61dan ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → 0 < 𝑛 )
83 40 82 jca ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → ( 𝑛 ∈ ℤ ∧ 0 < 𝑛 ) )
84 elnnz ( 𝑛 ∈ ℕ ↔ ( 𝑛 ∈ ℤ ∧ 0 < 𝑛 ) )
85 83 84 sylibr ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → 𝑛 ∈ ℕ )
86 simprr ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0𝑁 = ( 𝑃𝑛 ) ) ) → 𝑁 = ( 𝑃𝑛 ) )
87 38 85 86 reximssdv ( 𝜑 → ∃ 𝑛 ∈ ℕ 𝑁 = ( 𝑃𝑛 ) )
88 4 20 87 rspcedvd ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ 𝑁 = ( 𝑝𝑛 ) )