Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lem7.1 |
|- ( ph -> ( # ` ( Base ` K ) ) e. NN ) |
2 |
|
aks5lem7.2 |
|- P = ( chr ` K ) |
3 |
|
aks5lem7.3 |
|- ( ph -> K e. Field ) |
4 |
|
aks5lem7.4 |
|- ( ph -> P e. Prime ) |
5 |
|
aks5lem7.5 |
|- ( ph -> R e. NN ) |
6 |
|
aks5lem7.6 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
7 |
|
aks5lem7.7 |
|- ( ph -> P || N ) |
8 |
|
aks5lem7.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
9 |
|
aks5lem7.9 |
|- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
10 |
|
aks5lem7.10 |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) |
11 |
|
aks5lem7.11 |
|- ( ph -> R || ( ( # ` ( Base ` K ) ) - 1 ) ) |
12 |
|
aks5lem7.12 |
|- ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( X ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) X ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) |
13 |
|
aks5lem7.13 |
|- ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) |
14 |
|
aks5lem7.14 |
|- S = ( Poly1 ` ( Z/nZ ` N ) ) |
15 |
|
aks5lem7.15 |
|- L = ( ( RSpan ` S ) ` { ( ( R ( .g ` ( mulGrp ` S ) ) X ) ( -g ` S ) ( 1r ` S ) ) } ) |
16 |
|
aks5lem7.16 |
|- X = ( var1 ` ( Z/nZ ` N ) ) |
17 |
|
simpr |
|- ( ( ph /\ p = P ) -> p = P ) |
18 |
17
|
oveq1d |
|- ( ( ph /\ p = P ) -> ( p ^ n ) = ( P ^ n ) ) |
19 |
18
|
eqeq2d |
|- ( ( ph /\ p = P ) -> ( N = ( p ^ n ) <-> N = ( P ^ n ) ) ) |
20 |
19
|
rexbidv |
|- ( ( ph /\ p = P ) -> ( E. n e. NN N = ( p ^ n ) <-> E. n e. NN N = ( P ^ n ) ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
aks5lem7 |
|- ( ph -> N = ( P ^ ( P pCnt N ) ) ) |
22 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
23 |
6 22
|
syl |
|- ( ph -> N e. ZZ ) |
24 |
|
0red |
|- ( ph -> 0 e. RR ) |
25 |
|
3re |
|- 3 e. RR |
26 |
25
|
a1i |
|- ( ph -> 3 e. RR ) |
27 |
23
|
zred |
|- ( ph -> N e. RR ) |
28 |
|
3pos |
|- 0 < 3 |
29 |
28
|
a1i |
|- ( ph -> 0 < 3 ) |
30 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
31 |
6 30
|
syl |
|- ( ph -> 3 <_ N ) |
32 |
24 26 27 29 31
|
ltletrd |
|- ( ph -> 0 < N ) |
33 |
23 32
|
jca |
|- ( ph -> ( N e. ZZ /\ 0 < N ) ) |
34 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
35 |
33 34
|
sylibr |
|- ( ph -> N e. NN ) |
36 |
|
pcprmpw |
|- ( ( P e. Prime /\ N e. NN ) -> ( E. n e. NN0 N = ( P ^ n ) <-> N = ( P ^ ( P pCnt N ) ) ) ) |
37 |
4 35 36
|
syl2anc |
|- ( ph -> ( E. n e. NN0 N = ( P ^ n ) <-> N = ( P ^ ( P pCnt N ) ) ) ) |
38 |
21 37
|
mpbird |
|- ( ph -> E. n e. NN0 N = ( P ^ n ) ) |
39 |
|
simprl |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> n e. NN0 ) |
40 |
39
|
nn0zd |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> n e. ZZ ) |
41 |
|
simpr |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ 0 < n ) -> 0 < n ) |
42 |
39
|
nn0red |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> n e. RR ) |
43 |
|
0red |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> 0 e. RR ) |
44 |
42 43
|
lenltd |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> ( n <_ 0 <-> -. 0 < n ) ) |
45 |
44
|
bicomd |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> ( -. 0 < n <-> n <_ 0 ) ) |
46 |
45
|
biimpd |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> ( -. 0 < n -> n <_ 0 ) ) |
47 |
46
|
imp |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ -. 0 < n ) -> n <_ 0 ) |
48 |
|
simpr |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n <_ 0 ) -> n <_ 0 ) |
49 |
39
|
adantr |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n <_ 0 ) -> n e. NN0 ) |
50 |
|
nn0le0eq0 |
|- ( n e. NN0 -> ( n <_ 0 <-> n = 0 ) ) |
51 |
50
|
bicomd |
|- ( n e. NN0 -> ( n = 0 <-> n <_ 0 ) ) |
52 |
49 51
|
syl |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n <_ 0 ) -> ( n = 0 <-> n <_ 0 ) ) |
53 |
48 52
|
mpbird |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n <_ 0 ) -> n = 0 ) |
54 |
|
simplrr |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> N = ( P ^ n ) ) |
55 |
|
simpr |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> n = 0 ) |
56 |
55
|
oveq2d |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> ( P ^ n ) = ( P ^ 0 ) ) |
57 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> P e. Prime ) |
58 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
59 |
57 58
|
syl |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> P e. NN ) |
60 |
59
|
nncnd |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> P e. CC ) |
61 |
60
|
exp0d |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> ( P ^ 0 ) = 1 ) |
62 |
56 61
|
eqtrd |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> ( P ^ n ) = 1 ) |
63 |
54 62
|
eqtrd |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> N = 1 ) |
64 |
|
1red |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> 1 e. RR ) |
65 |
|
1red |
|- ( ph -> 1 e. RR ) |
66 |
35
|
nnred |
|- ( ph -> N e. RR ) |
67 |
|
1lt3 |
|- 1 < 3 |
68 |
67
|
a1i |
|- ( ph -> 1 < 3 ) |
69 |
65 26 66 68 31
|
ltletrd |
|- ( ph -> 1 < N ) |
70 |
69
|
adantr |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> 1 < N ) |
71 |
70
|
adantr |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> 1 < N ) |
72 |
64 71
|
ltned |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> 1 =/= N ) |
73 |
72
|
necomd |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> N =/= 1 ) |
74 |
73
|
neneqd |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> -. N = 1 ) |
75 |
63 74
|
pm2.21dd |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n = 0 ) -> 0 < n ) |
76 |
75
|
ex |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> ( n = 0 -> 0 < n ) ) |
77 |
76
|
adantr |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n <_ 0 ) -> ( n = 0 -> 0 < n ) ) |
78 |
53 77
|
mpd |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ n <_ 0 ) -> 0 < n ) |
79 |
78
|
ex |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> ( n <_ 0 -> 0 < n ) ) |
80 |
79
|
adantr |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ -. 0 < n ) -> ( n <_ 0 -> 0 < n ) ) |
81 |
47 80
|
mpd |
|- ( ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) /\ -. 0 < n ) -> 0 < n ) |
82 |
41 81
|
pm2.61dan |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> 0 < n ) |
83 |
40 82
|
jca |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> ( n e. ZZ /\ 0 < n ) ) |
84 |
|
elnnz |
|- ( n e. NN <-> ( n e. ZZ /\ 0 < n ) ) |
85 |
83 84
|
sylibr |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> n e. NN ) |
86 |
|
simprr |
|- ( ( ph /\ ( n e. NN0 /\ N = ( P ^ n ) ) ) -> N = ( P ^ n ) ) |
87 |
38 85 86
|
reximssdv |
|- ( ph -> E. n e. NN N = ( P ^ n ) ) |
88 |
4 20 87
|
rspcedvd |
|- ( ph -> E. p e. Prime E. n e. NN N = ( p ^ n ) ) |