Metamath Proof Explorer


Axiom ax-exfinfld

Description: Existence axiom for finite fields, eventually we want to construct them. (Contributed by metakunt, 13-Jul-2025)

Ref Expression
Assertion ax-exfinfld 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ∃ 𝑘 ∈ Field ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝𝑛 ) ∧ ( chr ‘ 𝑘 ) = 𝑝 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vp 𝑝
1 cprime
2 vn 𝑛
3 cn
4 vk 𝑘
5 cfield Field
6 chash
7 cbs Base
8 4 cv 𝑘
9 8 7 cfv ( Base ‘ 𝑘 )
10 9 6 cfv ( ♯ ‘ ( Base ‘ 𝑘 ) )
11 0 cv 𝑝
12 cexp
13 2 cv 𝑛
14 11 13 12 co ( 𝑝𝑛 )
15 10 14 wceq ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝𝑛 )
16 cchr chr
17 8 16 cfv ( chr ‘ 𝑘 )
18 17 11 wceq ( chr ‘ 𝑘 ) = 𝑝
19 15 18 wa ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝𝑛 ) ∧ ( chr ‘ 𝑘 ) = 𝑝 )
20 19 4 5 wrex 𝑘 ∈ Field ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝𝑛 ) ∧ ( chr ‘ 𝑘 ) = 𝑝 )
21 20 2 3 wral 𝑛 ∈ ℕ ∃ 𝑘 ∈ Field ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝𝑛 ) ∧ ( chr ‘ 𝑘 ) = 𝑝 )
22 21 0 1 wral 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ∃ 𝑘 ∈ Field ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝𝑛 ) ∧ ( chr ‘ 𝑘 ) = 𝑝 )