| Step |
Hyp |
Ref |
Expression |
| 0 |
|
vp |
⊢ 𝑝 |
| 1 |
|
cprime |
⊢ ℙ |
| 2 |
|
vn |
⊢ 𝑛 |
| 3 |
|
cn |
⊢ ℕ |
| 4 |
|
vk |
⊢ 𝑘 |
| 5 |
|
cfield |
⊢ Field |
| 6 |
|
chash |
⊢ ♯ |
| 7 |
|
cbs |
⊢ Base |
| 8 |
4
|
cv |
⊢ 𝑘 |
| 9 |
8 7
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
| 10 |
9 6
|
cfv |
⊢ ( ♯ ‘ ( Base ‘ 𝑘 ) ) |
| 11 |
0
|
cv |
⊢ 𝑝 |
| 12 |
|
cexp |
⊢ ↑ |
| 13 |
2
|
cv |
⊢ 𝑛 |
| 14 |
11 13 12
|
co |
⊢ ( 𝑝 ↑ 𝑛 ) |
| 15 |
10 14
|
wceq |
⊢ ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝 ↑ 𝑛 ) |
| 16 |
|
cchr |
⊢ chr |
| 17 |
8 16
|
cfv |
⊢ ( chr ‘ 𝑘 ) |
| 18 |
17 11
|
wceq |
⊢ ( chr ‘ 𝑘 ) = 𝑝 |
| 19 |
15 18
|
wa |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝 ↑ 𝑛 ) ∧ ( chr ‘ 𝑘 ) = 𝑝 ) |
| 20 |
19 4 5
|
wrex |
⊢ ∃ 𝑘 ∈ Field ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝 ↑ 𝑛 ) ∧ ( chr ‘ 𝑘 ) = 𝑝 ) |
| 21 |
20 2 3
|
wral |
⊢ ∀ 𝑛 ∈ ℕ ∃ 𝑘 ∈ Field ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝 ↑ 𝑛 ) ∧ ( chr ‘ 𝑘 ) = 𝑝 ) |
| 22 |
21 0 1
|
wral |
⊢ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ∃ 𝑘 ∈ Field ( ( ♯ ‘ ( Base ‘ 𝑘 ) ) = ( 𝑝 ↑ 𝑛 ) ∧ ( chr ‘ 𝑘 ) = 𝑝 ) |