Step |
Hyp |
Ref |
Expression |
1 |
|
aks5.1 |
|
2 |
|
aks5.2 |
|
3 |
|
aks5.3 |
|
4 |
|
aks5.4 |
|
5 |
|
aks5.5 |
|
6 |
|
aks5.6 |
|
7 |
|
aks5.7 |
|
8 |
|
aks5.8 |
|
9 |
|
aks5.9 |
|
10 |
|
aks5.10 |
|
11 |
|
simprl |
|
12 |
|
simplr |
|
13 |
12
|
ad2antrr |
|
14 |
|
prmnn |
|
15 |
13 14
|
syl |
|
16 |
6
|
ad2antrr |
|
17 |
12 14
|
syl |
|
18 |
17
|
nnzd |
|
19 |
16
|
nnzd |
|
20 |
18 19
|
gcdcomd |
|
21 |
5
|
ad2antrr |
|
22 |
|
eluzelz |
|
23 |
21 22
|
syl |
|
24 |
19 18 23
|
3jca |
|
25 |
19 23
|
gcdcomd |
|
26 |
7
|
ad2antrr |
|
27 |
25 26
|
eqtrd |
|
28 |
|
simpr |
|
29 |
27 28
|
jca |
|
30 |
|
rpdvds |
|
31 |
24 29 30
|
syl2anc |
|
32 |
20 31
|
eqtrd |
|
33 |
|
odzcl |
|
34 |
16 18 32 33
|
syl3anc |
|
35 |
34
|
ad2antrr |
|
36 |
35
|
nnnn0d |
|
37 |
15 36
|
nnexpcld |
|
38 |
11 37
|
eqeltrd |
|
39 |
|
eqid |
|
40 |
|
simplr |
|
41 |
|
simprr |
|
42 |
41 13
|
eqeltrd |
|
43 |
6
|
ad4antr |
|
44 |
5
|
ad4antr |
|
45 |
|
simpllr |
|
46 |
41 45
|
eqbrtrd |
|
47 |
7
|
ad4antr |
|
48 |
8
|
ad4antr |
|
49 |
15
|
nnzd |
|
50 |
32
|
ad2antrr |
|
51 |
|
odzid |
|
52 |
43 49 50 51
|
syl3anc |
|
53 |
11
|
eqcomd |
|
54 |
53
|
oveq1d |
|
55 |
52 54
|
breqtrd |
|
56 |
9
|
ad4antr |
|
57 |
10
|
ad4antr |
|
58 |
38 39 40 42 43 44 46 47 1 48 55 56 57 3 4 2
|
aks5lem8 |
|
59 |
12 34
|
exfinfldd |
|
60 |
58 59
|
r19.29a |
|
61 |
|
uzuzle23 |
|
62 |
5 61
|
syl |
|
63 |
|
exprmfct |
|
64 |
62 63
|
syl |
|
65 |
60 64
|
r19.29a |
|