Metamath Proof Explorer


Theorem aks5

Description: The AKS Primality test, given an integer N greater than or equal to 3, find a coprime R such that R is big enough. Then, if a bunch of polynomial equalities in the residue ring hold then N is a prime power. Currently depends on the axiom ax-exfinfld , since we currently do not have the existence of finite fields in the database. (Contributed by metakunt, 16-Aug-2025)

Ref Expression
Hypotheses aks5.1 A = ϕ R log 2 N
aks5.2 X = var 1 /N
aks5.3 S = Poly 1 /N
aks5.4 L = RSpan S R mulGrp S X - S 1 S
aks5.5 φ N 3
aks5.6 φ R
aks5.7 φ N gcd R = 1
aks5.8 φ log 2 N 2 < od R N
aks5.9 φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
aks5.10 φ a 1 A a gcd N = 1
Assertion aks5 φ p n N = p n

Proof

Step Hyp Ref Expression
1 aks5.1 A = ϕ R log 2 N
2 aks5.2 X = var 1 /N
3 aks5.3 S = Poly 1 /N
4 aks5.4 L = RSpan S R mulGrp S X - S 1 S
5 aks5.5 φ N 3
6 aks5.6 φ R
7 aks5.7 φ N gcd R = 1
8 aks5.8 φ log 2 N 2 < od R N
9 aks5.9 φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
10 aks5.10 φ a 1 A a gcd N = 1
11 simprl φ q q N k Field Base k = q od R q chr k = q Base k = q od R q
12 simplr φ q q N q
13 12 ad2antrr φ q q N k Field Base k = q od R q chr k = q q
14 prmnn q q
15 13 14 syl φ q q N k Field Base k = q od R q chr k = q q
16 6 ad2antrr φ q q N R
17 12 14 syl φ q q N q
18 17 nnzd φ q q N q
19 16 nnzd φ q q N R
20 18 19 gcdcomd φ q q N q gcd R = R gcd q
21 5 ad2antrr φ q q N N 3
22 eluzelz N 3 N
23 21 22 syl φ q q N N
24 19 18 23 3jca φ q q N R q N
25 19 23 gcdcomd φ q q N R gcd N = N gcd R
26 7 ad2antrr φ q q N N gcd R = 1
27 25 26 eqtrd φ q q N R gcd N = 1
28 simpr φ q q N q N
29 27 28 jca φ q q N R gcd N = 1 q N
30 rpdvds R q N R gcd N = 1 q N R gcd q = 1
31 24 29 30 syl2anc φ q q N R gcd q = 1
32 20 31 eqtrd φ q q N q gcd R = 1
33 odzcl R q q gcd R = 1 od R q
34 16 18 32 33 syl3anc φ q q N od R q
35 34 ad2antrr φ q q N k Field Base k = q od R q chr k = q od R q
36 35 nnnn0d φ q q N k Field Base k = q od R q chr k = q od R q 0
37 15 36 nnexpcld φ q q N k Field Base k = q od R q chr k = q q od R q
38 11 37 eqeltrd φ q q N k Field Base k = q od R q chr k = q Base k
39 eqid chr k = chr k
40 simplr φ q q N k Field Base k = q od R q chr k = q k Field
41 simprr φ q q N k Field Base k = q od R q chr k = q chr k = q
42 41 13 eqeltrd φ q q N k Field Base k = q od R q chr k = q chr k
43 6 ad4antr φ q q N k Field Base k = q od R q chr k = q R
44 5 ad4antr φ q q N k Field Base k = q od R q chr k = q N 3
45 simpllr φ q q N k Field Base k = q od R q chr k = q q N
46 41 45 eqbrtrd φ q q N k Field Base k = q od R q chr k = q chr k N
47 7 ad4antr φ q q N k Field Base k = q od R q chr k = q N gcd R = 1
48 8 ad4antr φ q q N k Field Base k = q od R q chr k = q log 2 N 2 < od R N
49 15 nnzd φ q q N k Field Base k = q od R q chr k = q q
50 32 ad2antrr φ q q N k Field Base k = q od R q chr k = q q gcd R = 1
51 odzid R q q gcd R = 1 R q od R q 1
52 43 49 50 51 syl3anc φ q q N k Field Base k = q od R q chr k = q R q od R q 1
53 11 eqcomd φ q q N k Field Base k = q od R q chr k = q q od R q = Base k
54 53 oveq1d φ q q N k Field Base k = q od R q chr k = q q od R q 1 = Base k 1
55 52 54 breqtrd φ q q N k Field Base k = q od R q chr k = q R Base k 1
56 9 ad4antr φ q q N k Field Base k = q od R q chr k = q a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
57 10 ad4antr φ q q N k Field Base k = q od R q chr k = q a 1 A a gcd N = 1
58 38 39 40 42 43 44 46 47 1 48 55 56 57 3 4 2 aks5lem8 φ q q N k Field Base k = q od R q chr k = q p n N = p n
59 12 34 exfinfldd φ q q N k Field Base k = q od R q chr k = q
60 58 59 r19.29a φ q q N p n N = p n
61 uzuzle23 N 3 N 2
62 5 61 syl φ N 2
63 exprmfct N 2 q q N
64 62 63 syl φ q q N
65 60 64 r19.29a φ p n N = p n