Metamath Proof Explorer


Theorem exfinfldd

Description: For any prime P and any positive integer N there exists a field k such that k contains P ^ N elements. (Contributed by metakunt, 13-Jul-2025)

Ref Expression
Hypotheses exfinfldd.1 φ P
exfinfldd.2 φ N
Assertion exfinfldd φ k Field Base k = P N chr k = P

Proof

Step Hyp Ref Expression
1 exfinfldd.1 φ P
2 exfinfldd.2 φ N
3 oveq2 n = N P n = P N
4 3 eqeq2d n = N Base k = P n Base k = P N
5 4 anbi1d n = N Base k = P n chr k = P Base k = P N chr k = P
6 5 rexbidv n = N k Field Base k = P n chr k = P k Field Base k = P N chr k = P
7 oveq1 p = P p n = P n
8 7 eqeq2d p = P Base k = p n Base k = P n
9 eqeq2 p = P chr k = p chr k = P
10 8 9 anbi12d p = P Base k = p n chr k = p Base k = P n chr k = P
11 10 rexbidv p = P k Field Base k = p n chr k = p k Field Base k = P n chr k = P
12 11 ralbidv p = P n k Field Base k = p n chr k = p n k Field Base k = P n chr k = P
13 ax-exfinfld p n k Field Base k = p n chr k = p
14 13 a1i φ p n k Field Base k = p n chr k = p
15 12 14 1 rspcdva φ n k Field Base k = P n chr k = P
16 6 15 2 rspcdva φ k Field Base k = P N chr k = P