Metamath Proof Explorer


Theorem aks5lem6

Description: Connect results of section 5 and Theorem 6.1 AKS. (Contributed by metakunt, 25-Jun-2025)

Ref Expression
Hypotheses aks5lem6.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks5lem6.2 P = chr K
aks5lem6.3 φ K Field
aks5lem6.4 φ P
aks5lem6.5 φ R
aks5lem6.6 φ N 3
aks5lem6.7 φ P N
aks5lem6.8 φ N gcd R = 1
aks5lem6.9 A = ϕ R log 2 N
aks5lem6.10 φ log 2 N 2 < od R N
aks5lem6.11 φ x Base K P mulGrp K x K RingIso K
aks5lem6.12 φ M mulGrp K PrimRoots R
aks5lem6.13 φ b 1 A b gcd N = 1
aks5lem6.14 S = Poly 1 /N
aks5lem6.15 L = RSpan S R mulGrp S var 1 /N - S 1 S
aks5lem6.16 X = var 1 /N
aks5lem6.17 φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
Assertion aks5lem6 φ N = P P pCnt N

Proof

Step Hyp Ref Expression
1 aks5lem6.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks5lem6.2 P = chr K
3 aks5lem6.3 φ K Field
4 aks5lem6.4 φ P
5 aks5lem6.5 φ R
6 aks5lem6.6 φ N 3
7 aks5lem6.7 φ P N
8 aks5lem6.8 φ N gcd R = 1
9 aks5lem6.9 A = ϕ R log 2 N
10 aks5lem6.10 φ log 2 N 2 < od R N
11 aks5lem6.11 φ x Base K P mulGrp K x K RingIso K
12 aks5lem6.12 φ M mulGrp K PrimRoots R
13 aks5lem6.13 φ b 1 A b gcd N = 1
14 aks5lem6.14 S = Poly 1 /N
15 aks5lem6.15 L = RSpan S R mulGrp S var 1 /N - S 1 S
16 aks5lem6.16 X = var 1 /N
17 aks5lem6.17 φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
18 eluzelz N 3 N
19 6 18 syl φ N
20 0red φ 0
21 3re 3
22 21 a1i φ 3
23 19 zred φ N
24 3pos 0 < 3
25 24 a1i φ 0 < 3
26 eluzle N 3 3 N
27 6 26 syl φ 3 N
28 20 22 23 25 27 ltletrd φ 0 < N
29 19 28 jca φ N 0 < N
30 elnnz N N 0 < N
31 29 30 sylibr φ N
32 4 31 7 3jca φ P N P N
33 eqid S / 𝑠 S ~ QG L = S / 𝑠 S ~ QG L
34 16 eqcomi var 1 /N = X
35 34 a1i φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L var 1 /N = X
36 35 oveq1d φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L var 1 /N + S ℤRHom S a = X + S ℤRHom S a
37 36 oveq2d φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L N mulGrp S var 1 /N + S ℤRHom S a = N mulGrp S X + S ℤRHom S a
38 37 eceq1d φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
39 simpr φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L
40 eqcom var 1 /N = X X = var 1 /N
41 40 imbi2i φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L var 1 /N = X φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L X = var 1 /N
42 35 41 mpbi φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L X = var 1 /N
43 42 oveq2d φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L N mulGrp S X = N mulGrp S var 1 /N
44 43 oveq1d φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L N mulGrp S X + S ℤRHom S a = N mulGrp S var 1 /N + S ℤRHom S a
45 44 eceq1d φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L
46 38 39 45 3eqtrd φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L
47 46 ex φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L
48 47 ralimdva φ a 1 A N mulGrp S X + S ℤRHom S a S ~ QG L = N mulGrp S X + S ℤRHom S a S ~ QG L a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L
49 17 48 mpd φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L
50 3 2 32 33 15 5 1 14 49 aks5lem5a φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
51 1 2 3 4 5 6 7 8 9 10 11 12 13 50 aks6d1c7 φ N = P P pCnt N