Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lema.1 |
|
2 |
|
aks5lema.2 |
|
3 |
|
aks5lema.3 |
|
4 |
|
aks5lema.9 |
|
5 |
|
aks5lema.10 |
|
6 |
|
aks5lema.11 |
|
7 |
|
aks5lema.14 |
|
8 |
|
aks5lema.15 |
|
9 |
|
aks5lem5a.13 |
|
10 |
1
|
ad3antrrr |
|
11 |
3
|
ad3antrrr |
|
12 |
6
|
ad3antrrr |
|
13 |
|
simpr |
|
14 |
|
elfzelz |
|
15 |
14
|
adantl |
|
16 |
15
|
adantr |
|
17 |
16
|
adantr |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
3
|
simp2d |
|
22 |
21
|
adantr |
|
23 |
22
|
nnnn0d |
|
24 |
|
eqid |
|
25 |
24
|
zncrng |
|
26 |
23 25
|
syl |
|
27 |
8 18 19 20 26 15
|
ply1asclzrhval |
|
28 |
27
|
oveq2d |
|
29 |
28
|
oveq2d |
|
30 |
29
|
eceq1d |
|
31 |
30
|
adantr |
|
32 |
|
simpr |
|
33 |
27
|
eqcomd |
|
34 |
33
|
oveq2d |
|
35 |
34
|
eceq1d |
|
36 |
35
|
adantr |
|
37 |
31 32 36
|
3eqtrd |
|
38 |
37
|
adantr |
|
39 |
10 2 11 4 5 12 7 8 13 17 38
|
aks5lem4a |
|
40 |
39
|
ralrimiva |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
1
|
fldcrngd |
|
46 |
45
|
adantr |
|
47 |
41 42 43 44 46 15
|
ply1asclzrhval |
|
48 |
47
|
oveq2d |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
41
|
ply1crng |
|
52 |
45 51
|
syl |
|
53 |
52
|
adantr |
|
54 |
|
crngring |
|
55 |
53 54
|
syl |
|
56 |
55
|
ringgrpd |
|
57 |
46
|
crngringd |
|
58 |
|
eqid |
|
59 |
58 41 49
|
vr1cl |
|
60 |
57 59
|
syl |
|
61 |
43
|
zrhrhm |
|
62 |
55 61
|
syl |
|
63 |
|
zringbas |
|
64 |
63 49
|
rhmf |
|
65 |
62 64
|
syl |
|
66 |
65 15
|
ffvelcdmd |
|
67 |
49 50 56 60 66
|
grpcld |
|
68 |
48 67
|
eqeltrd |
|
69 |
68
|
adantr |
|
70 |
22
|
adantr |
|
71 |
7 69 70
|
aks6d1c1p1 |
|
72 |
40 71
|
mpbird |
|
73 |
72
|
ex |
|
74 |
73
|
ralimdva |
|
75 |
9 74
|
mpd |
|