Metamath Proof Explorer


Theorem aks5lem5a

Description: Lemma for AKS, section 5, connect to Theorem 6.1. (Contributed by metakunt, 17-Jun-2025)

Ref Expression
Hypotheses aks5lema.1 φ K Field
aks5lema.2 P = chr K
aks5lema.3 φ P N P N
aks5lema.9 B = S / 𝑠 S ~ QG L
aks5lema.10 L = RSpan S R mulGrp S var 1 /N - S 1 S
aks5lema.11 φ R
aks5lema.14 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks5lema.15 S = Poly 1 /N
aks5lem5a.13 φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L
Assertion aks5lem5a φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a

Proof

Step Hyp Ref Expression
1 aks5lema.1 φ K Field
2 aks5lema.2 P = chr K
3 aks5lema.3 φ P N P N
4 aks5lema.9 B = S / 𝑠 S ~ QG L
5 aks5lema.10 L = RSpan S R mulGrp S var 1 /N - S 1 S
6 aks5lema.11 φ R
7 aks5lema.14 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
8 aks5lema.15 S = Poly 1 /N
9 aks5lem5a.13 φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L
10 1 ad3antrrr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L y mulGrp K PrimRoots R K Field
11 3 ad3antrrr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L y mulGrp K PrimRoots R P N P N
12 6 ad3antrrr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L y mulGrp K PrimRoots R R
13 simpr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L y mulGrp K PrimRoots R y mulGrp K PrimRoots R
14 elfzelz a 1 A a
15 14 adantl φ a 1 A a
16 15 adantr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L a
17 16 adantr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L y mulGrp K PrimRoots R a
18 eqid algSc S = algSc S
19 eqid ℤRHom S = ℤRHom S
20 eqid ℤRHom /N = ℤRHom /N
21 3 simp2d φ N
22 21 adantr φ a 1 A N
23 22 nnnn0d φ a 1 A N 0
24 eqid /N = /N
25 24 zncrng N 0 /N CRing
26 23 25 syl φ a 1 A /N CRing
27 8 18 19 20 26 15 ply1asclzrhval φ a 1 A algSc S ℤRHom /N a = ℤRHom S a
28 27 oveq2d φ a 1 A var 1 /N + S algSc S ℤRHom /N a = var 1 /N + S ℤRHom S a
29 28 oveq2d φ a 1 A N mulGrp S var 1 /N + S algSc S ℤRHom /N a = N mulGrp S var 1 /N + S ℤRHom S a
30 29 eceq1d φ a 1 A N mulGrp S var 1 /N + S algSc S ℤRHom /N a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L
31 30 adantr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L N mulGrp S var 1 /N + S algSc S ℤRHom /N a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L
32 simpr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L
33 27 eqcomd φ a 1 A ℤRHom S a = algSc S ℤRHom /N a
34 33 oveq2d φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a = N mulGrp S var 1 /N + S algSc S ℤRHom /N a
35 34 eceq1d φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N a S ~ QG L
36 35 adantr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N a S ~ QG L
37 31 32 36 3eqtrd φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L N mulGrp S var 1 /N + S algSc S ℤRHom /N a S ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N a S ~ QG L
38 37 adantr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L y mulGrp K PrimRoots R N mulGrp S var 1 /N + S algSc S ℤRHom /N a S ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N a S ~ QG L
39 10 2 11 4 5 12 7 8 13 17 38 aks5lem4a φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L y mulGrp K PrimRoots R N mulGrp K eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a y = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a N mulGrp K y
40 39 ralrimiva φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L y mulGrp K PrimRoots R N mulGrp K eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a y = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a N mulGrp K y
41 eqid Poly 1 K = Poly 1 K
42 eqid algSc Poly 1 K = algSc Poly 1 K
43 eqid ℤRHom Poly 1 K = ℤRHom Poly 1 K
44 eqid ℤRHom K = ℤRHom K
45 1 fldcrngd φ K CRing
46 45 adantr φ a 1 A K CRing
47 41 42 43 44 46 15 ply1asclzrhval φ a 1 A algSc Poly 1 K ℤRHom K a = ℤRHom Poly 1 K a
48 47 oveq2d φ a 1 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a = var 1 K + Poly 1 K ℤRHom Poly 1 K a
49 eqid Base Poly 1 K = Base Poly 1 K
50 eqid + Poly 1 K = + Poly 1 K
51 41 ply1crng K CRing Poly 1 K CRing
52 45 51 syl φ Poly 1 K CRing
53 52 adantr φ a 1 A Poly 1 K CRing
54 crngring Poly 1 K CRing Poly 1 K Ring
55 53 54 syl φ a 1 A Poly 1 K Ring
56 55 ringgrpd φ a 1 A Poly 1 K Grp
57 46 crngringd φ a 1 A K Ring
58 eqid var 1 K = var 1 K
59 58 41 49 vr1cl K Ring var 1 K Base Poly 1 K
60 57 59 syl φ a 1 A var 1 K Base Poly 1 K
61 43 zrhrhm Poly 1 K Ring ℤRHom Poly 1 K ring RingHom Poly 1 K
62 55 61 syl φ a 1 A ℤRHom Poly 1 K ring RingHom Poly 1 K
63 zringbas = Base ring
64 63 49 rhmf ℤRHom Poly 1 K ring RingHom Poly 1 K ℤRHom Poly 1 K : Base Poly 1 K
65 62 64 syl φ a 1 A ℤRHom Poly 1 K : Base Poly 1 K
66 65 15 ffvelcdmd φ a 1 A ℤRHom Poly 1 K a Base Poly 1 K
67 49 50 56 60 66 grpcld φ a 1 A var 1 K + Poly 1 K ℤRHom Poly 1 K a Base Poly 1 K
68 48 67 eqeltrd φ a 1 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a Base Poly 1 K
69 68 adantr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a Base Poly 1 K
70 22 adantr φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L N
71 7 69 70 aks6d1c1p1 φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a y mulGrp K PrimRoots R N mulGrp K eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a y = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a N mulGrp K y
72 40 71 mpbird φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
73 72 ex φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
74 73 ralimdva φ a 1 A N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L = N mulGrp S var 1 /N + S ℤRHom S a S ~ QG L a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
75 9 74 mpd φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a