Metamath Proof Explorer


Theorem ply1asclzrhval

Description: Transfer results from algebraic scalars and ZR ring homomorphisms. (Contributed by metakunt, 17-Jun-2025)

Ref Expression
Hypotheses ply1asclzrhval.1 W = Poly 1 R
ply1asclzrhval.2 A = algSc W
ply1asclzrhval.3 B = ℤRHom W
ply1asclzrhval.4 C = ℤRHom R
ply1asclzrhval.5 φ R CRing
ply1asclzrhval.6 φ X
Assertion ply1asclzrhval φ A C X = B X

Proof

Step Hyp Ref Expression
1 ply1asclzrhval.1 W = Poly 1 R
2 ply1asclzrhval.2 A = algSc W
3 ply1asclzrhval.3 B = ℤRHom W
4 ply1asclzrhval.4 C = ℤRHom R
5 ply1asclzrhval.5 φ R CRing
6 ply1asclzrhval.6 φ X
7 eqid Poly 1 R = Poly 1 R
8 7 ply1assa R CRing Poly 1 R AssAlg
9 5 8 syl φ Poly 1 R AssAlg
10 1 9 eqeltrid φ W AssAlg
11 eqid Scalar W = Scalar W
12 2 11 asclrhm W AssAlg A Scalar W RingHom W
13 10 12 syl φ A Scalar W RingHom W
14 5 crngringd φ R Ring
15 1 ply1sca R Ring R = Scalar W
16 14 15 syl φ R = Scalar W
17 16 eqcomd φ Scalar W = R
18 17 oveq1d φ Scalar W RingHom W = R RingHom W
19 13 18 eleqtrd φ A R RingHom W
20 19 6 4 3 rhmzrhval φ A C X = B X