Metamath Proof Explorer


Theorem rhmzrhval

Description: Evaluation of integers across a ring homomorphism. (Contributed by metakunt, 4-Jun-2025)

Ref Expression
Hypotheses rhmzrhval.1 φ F R RingHom S
rhmzrhval.2 φ X
rhmzrhval.3 M = ℤRHom R
rhmzrhval.4 N = ℤRHom S
Assertion rhmzrhval φ F M X = N X

Proof

Step Hyp Ref Expression
1 rhmzrhval.1 φ F R RingHom S
2 rhmzrhval.2 φ X
3 rhmzrhval.3 M = ℤRHom R
4 rhmzrhval.4 N = ℤRHom S
5 rhmrcl1 F R RingHom S R Ring
6 1 5 syl φ R Ring
7 eqid R = R
8 eqid 1 R = 1 R
9 3 7 8 zrhval2 R Ring M = x x R 1 R
10 6 9 syl φ M = x x R 1 R
11 10 fveq1d φ M X = x x R 1 R X
12 11 fveq2d φ F M X = F x x R 1 R X
13 eqidd φ x x R 1 R = x x R 1 R
14 oveq1 x = X x R 1 R = X R 1 R
15 14 adantl φ x = X x R 1 R = X R 1 R
16 ovexd φ X R 1 R V
17 13 15 2 16 fvmptd φ x x R 1 R X = X R 1 R
18 17 fveq2d φ F x x R 1 R X = F X R 1 R
19 rhmghm F R RingHom S F R GrpHom S
20 1 19 syl φ F R GrpHom S
21 eqid Base R = Base R
22 21 8 ringidcl R Ring 1 R Base R
23 6 22 syl φ 1 R Base R
24 eqid S = S
25 21 7 24 ghmmulg F R GrpHom S X 1 R Base R F X R 1 R = X S F 1 R
26 20 2 23 25 syl3anc φ F X R 1 R = X S F 1 R
27 eqid 1 S = 1 S
28 8 27 rhm1 F R RingHom S F 1 R = 1 S
29 1 28 syl φ F 1 R = 1 S
30 29 oveq2d φ X S F 1 R = X S 1 S
31 26 30 eqtrd φ F X R 1 R = X S 1 S
32 18 31 eqtrd φ F x x R 1 R X = X S 1 S
33 eqidd φ x x S 1 S = x x S 1 S
34 oveq1 x = X x S 1 S = X S 1 S
35 34 adantl φ x = X x S 1 S = X S 1 S
36 ovexd φ X S 1 S V
37 33 35 2 36 fvmptd φ x x S 1 S X = X S 1 S
38 37 eqcomd φ X S 1 S = x x S 1 S X
39 32 38 eqtrd φ F x x R 1 R X = x x S 1 S X
40 12 39 eqtrd φ F M X = x x S 1 S X
41 rhmrcl2 F R RingHom S S Ring
42 1 41 syl φ S Ring
43 4 24 27 zrhval2 S Ring N = x x S 1 S
44 43 fveq1d S Ring N X = x x S 1 S X
45 42 44 syl φ N X = x x S 1 S X
46 45 eqcomd φ x x S 1 S X = N X
47 40 46 eqtrd φ F M X = N X