Step |
Hyp |
Ref |
Expression |
1 |
|
rhmzrhval.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
2 |
|
rhmzrhval.2 |
⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
3 |
|
rhmzrhval.3 |
⊢ 𝑀 = ( ℤRHom ‘ 𝑅 ) |
4 |
|
rhmzrhval.4 |
⊢ 𝑁 = ( ℤRHom ‘ 𝑆 ) |
5 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
9 |
3 7 8
|
zrhval2 |
⊢ ( 𝑅 ∈ Ring → 𝑀 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝑀 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) ) ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑋 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑋 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
16 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑋 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ V ) |
17 |
13 15 2 16
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) = ( 𝑋 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑋 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
19 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
20 |
1 19
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
22 |
21 8
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
23 |
6 22
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
24 |
|
eqid |
⊢ ( .g ‘ 𝑆 ) = ( .g ‘ 𝑆 ) |
25 |
21 7 24
|
ghmmulg |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑋 ∈ ℤ ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑋 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑋 ( .g ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
26 |
20 2 23 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑋 ( .g ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
27 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
28 |
8 27
|
rhm1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
29 |
1 28
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 ( .g ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑋 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
31 |
26 30
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑋 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
32 |
18 31
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) ) = ( 𝑋 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
33 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ) |
34 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = ( 𝑋 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = ( 𝑋 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
36 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑋 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ∈ V ) |
37 |
33 35 2 36
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ‘ 𝑋 ) = ( 𝑋 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
38 |
37
|
eqcomd |
⊢ ( 𝜑 → ( 𝑋 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ‘ 𝑋 ) ) |
39 |
32 38
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) ) = ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ‘ 𝑋 ) ) |
40 |
12 39
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ‘ 𝑋 ) ) |
41 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
42 |
1 41
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
43 |
4 24 27
|
zrhval2 |
⊢ ( 𝑆 ∈ Ring → 𝑁 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ) |
44 |
43
|
fveq1d |
⊢ ( 𝑆 ∈ Ring → ( 𝑁 ‘ 𝑋 ) = ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ‘ 𝑋 ) ) |
45 |
42 44
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ‘ 𝑋 ) ) |
46 |
45
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ‘ 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
47 |
40 46
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |