Metamath Proof Explorer


Theorem zndvdchrrhm

Description: Construction of a ring homomorphism from Z/nZ to R when the characteristic of R divides N . (Contributed by metakunt, 4-Jun-2025)

Ref Expression
Hypotheses zndvdchrrhm.1 ( 𝜑𝑅 ∈ Ring )
zndvdchrrhm.2 ( 𝜑𝑁 ∈ ℕ )
zndvdchrrhm.3 ( 𝜑 → ( chr ‘ 𝑅 ) ∈ ℤ )
zndvdchrrhm.4 ( 𝜑 → ( chr ‘ 𝑅 ) ∥ 𝑁 )
zndvdchrrhm.5 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
zndvdchrrhm.6 𝐹 = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) )
Assertion zndvdchrrhm ( 𝜑𝐹 ∈ ( 𝑍 RingHom 𝑅 ) )

Proof

Step Hyp Ref Expression
1 zndvdchrrhm.1 ( 𝜑𝑅 ∈ Ring )
2 zndvdchrrhm.2 ( 𝜑𝑁 ∈ ℕ )
3 zndvdchrrhm.3 ( 𝜑 → ( chr ‘ 𝑅 ) ∈ ℤ )
4 zndvdchrrhm.4 ( 𝜑 → ( chr ‘ 𝑅 ) ∥ 𝑁 )
5 zndvdchrrhm.5 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
6 zndvdchrrhm.6 𝐹 = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) )
7 2 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
8 eqid ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring )
9 eqid ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) )
10 8 9 5 znbas2 ( 𝑁 ∈ ℕ0 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( Base ‘ 𝑍 ) )
11 7 10 syl ( 𝜑 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( Base ‘ 𝑍 ) )
12 11 eqcomd ( 𝜑 → ( Base ‘ 𝑍 ) = ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) )
13 12 mpteq1d ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↦ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) )
14 6 13 eqtrid ( 𝜑𝐹 = ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↦ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) )
15 eqid ( 0g𝑅 ) = ( 0g𝑅 )
16 eqid ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 )
17 16 zrhrhm ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) )
18 1 17 syl ( 𝜑 → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) )
19 eqid ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) = ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } )
20 nfcv 𝑦 ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 )
21 nfcv 𝑥 ( ( ℤRHom ‘ 𝑅 ) “ 𝑦 )
22 imaeq2 ( 𝑥 = 𝑦 → ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) = ( ( ℤRHom ‘ 𝑅 ) “ 𝑦 ) )
23 22 unieqd ( 𝑥 = 𝑦 ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) = ( ( ℤRHom ‘ 𝑅 ) “ 𝑦 ) )
24 20 21 23 cbvmpt ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↦ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) = ( 𝑦 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↦ ( ( ℤRHom ‘ 𝑅 ) “ 𝑦 ) )
25 zringcrng ring ∈ CRing
26 25 a1i ( 𝜑 → ℤring ∈ CRing )
27 zringring ring ∈ Ring
28 27 a1i ( 𝜑 → ℤring ∈ Ring )
29 eqid ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring )
30 29 15 kerlidl ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) ∈ ( LIdeal ‘ ℤring ) )
31 18 30 syl ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) ∈ ( LIdeal ‘ ℤring ) )
32 simpr ( ( 𝜑𝑎 ∈ { 𝑁 } ) → 𝑎 ∈ { 𝑁 } )
33 elsng ( 𝑎 ∈ { 𝑁 } → ( 𝑎 ∈ { 𝑁 } ↔ 𝑎 = 𝑁 ) )
34 32 33 syl5ibcom ( ( 𝜑𝑎 ∈ { 𝑁 } ) → ( 𝑎 ∈ { 𝑁 } → 𝑎 = 𝑁 ) )
35 34 imp ( ( ( 𝜑𝑎 ∈ { 𝑁 } ) ∧ 𝑎 ∈ { 𝑁 } ) → 𝑎 = 𝑁 )
36 32 35 mpdan ( ( 𝜑𝑎 ∈ { 𝑁 } ) → 𝑎 = 𝑁 )
37 zringbas ℤ = ( Base ‘ ℤring )
38 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
39 37 38 rhmf ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) )
40 17 39 syl ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) )
41 1 40 syl ( 𝜑 → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) )
42 41 ffnd ( 𝜑 → ( ℤRHom ‘ 𝑅 ) Fn ℤ )
43 2 nnzd ( 𝜑𝑁 ∈ ℤ )
44 eqid ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 )
45 44 16 15 chrdvds ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( ( chr ‘ 𝑅 ) ∥ 𝑁 ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) = ( 0g𝑅 ) ) )
46 1 43 45 syl2anc ( 𝜑 → ( ( chr ‘ 𝑅 ) ∥ 𝑁 ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) = ( 0g𝑅 ) ) )
47 4 46 mpbid ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) = ( 0g𝑅 ) )
48 fvexd ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) ∈ V )
49 elsng ( ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) ∈ V → ( ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) ∈ { ( 0g𝑅 ) } ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) = ( 0g𝑅 ) ) )
50 48 49 syl ( 𝜑 → ( ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) ∈ { ( 0g𝑅 ) } ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) = ( 0g𝑅 ) ) )
51 47 50 mpbird ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) ∈ { ( 0g𝑅 ) } )
52 42 43 51 elpreimad ( 𝜑𝑁 ∈ ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) )
53 52 adantr ( ( 𝜑𝑎 ∈ { 𝑁 } ) → 𝑁 ∈ ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) )
54 36 53 eqeltrd ( ( 𝜑𝑎 ∈ { 𝑁 } ) → 𝑎 ∈ ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) )
55 54 ex ( 𝜑 → ( 𝑎 ∈ { 𝑁 } → 𝑎 ∈ ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) ) )
56 55 ssrdv ( 𝜑 → { 𝑁 } ⊆ ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) )
57 8 29 rspssp ( ( ℤring ∈ Ring ∧ ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) ∈ ( LIdeal ‘ ℤring ) ∧ { 𝑁 } ⊆ ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ⊆ ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) )
58 28 31 56 57 syl3anc ( 𝜑 → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ⊆ ( ( ℤRHom ‘ 𝑅 ) “ { ( 0g𝑅 ) } ) )
59 26 crngringd ( 𝜑 → ℤring ∈ Ring )
60 43 adantr ( ( 𝜑𝑎 ∈ { 𝑁 } ) → 𝑁 ∈ ℤ )
61 36 60 eqeltrd ( ( 𝜑𝑎 ∈ { 𝑁 } ) → 𝑎 ∈ ℤ )
62 61 ex ( 𝜑 → ( 𝑎 ∈ { 𝑁 } → 𝑎 ∈ ℤ ) )
63 62 ssrdv ( 𝜑 → { 𝑁 } ⊆ ℤ )
64 8 37 29 rspcl ( ( ℤring ∈ Ring ∧ { 𝑁 } ⊆ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) )
65 59 63 64 syl2anc ( 𝜑 → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) )
66 15 18 19 9 24 26 58 65 rhmqusnsg ( 𝜑 → ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↦ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) ∈ ( ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) RingHom 𝑅 ) )
67 14 66 eqeltrd ( 𝜑𝐹 ∈ ( ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) RingHom 𝑅 ) )
68 eqidd ( 𝜑 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) )
69 eqidd ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) )
70 8 9 5 znadd ( 𝑁 ∈ ℕ0 → ( +g ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( +g𝑍 ) )
71 7 70 syl ( 𝜑 → ( +g ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( +g𝑍 ) )
72 71 oveqdr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ∧ 𝑏 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) ) → ( 𝑎 ( +g ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) 𝑏 ) = ( 𝑎 ( +g𝑍 ) 𝑏 ) )
73 eqidd ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( +g𝑅 ) 𝑏 ) = ( 𝑎 ( +g𝑅 ) 𝑏 ) )
74 8 9 5 znmul ( 𝑁 ∈ ℕ0 → ( .r ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( .r𝑍 ) )
75 7 74 syl ( 𝜑 → ( .r ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( .r𝑍 ) )
76 75 oveqdr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ∧ 𝑏 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) ) → ( 𝑎 ( .r ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) 𝑏 ) = ( 𝑎 ( .r𝑍 ) 𝑏 ) )
77 eqidd ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( .r𝑅 ) 𝑏 ) = ( 𝑎 ( .r𝑅 ) 𝑏 ) )
78 68 69 11 69 72 73 76 77 rhmpropd ( 𝜑 → ( ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) RingHom 𝑅 ) = ( 𝑍 RingHom 𝑅 ) )
79 67 78 eleqtrd ( 𝜑𝐹 ∈ ( 𝑍 RingHom 𝑅 ) )