Step |
Hyp |
Ref |
Expression |
1 |
|
zndvdchrrhm.1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
2 |
|
zndvdchrrhm.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
zndvdchrrhm.3 |
⊢ ( 𝜑 → ( chr ‘ 𝑅 ) ∈ ℤ ) |
4 |
|
zndvdchrrhm.4 |
⊢ ( 𝜑 → ( chr ‘ 𝑅 ) ∥ 𝑁 ) |
5 |
|
zndvdchrrhm.5 |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
6 |
|
zndvdchrrhm.6 |
⊢ 𝐹 = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) |
7 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
8 |
|
eqid |
⊢ ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring ) |
9 |
|
eqid |
⊢ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
10 |
8 9 5
|
znbas2 |
⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( Base ‘ 𝑍 ) ) |
11 |
7 10
|
syl |
⊢ ( 𝜑 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( Base ‘ 𝑍 ) ) |
12 |
11
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝑍 ) = ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) |
13 |
12
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↦ ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) ) |
14 |
6 13
|
eqtrid |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↦ ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
16 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
17 |
16
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
18 |
1 17
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
19 |
|
eqid |
⊢ ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) = ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑦 ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) |
21 |
|
nfcv |
⊢ Ⅎ 𝑥 ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑦 ) |
22 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) = ( ( ℤRHom ‘ 𝑅 ) “ 𝑦 ) ) |
23 |
22
|
unieqd |
⊢ ( 𝑥 = 𝑦 → ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) = ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑦 ) ) |
24 |
20 21 23
|
cbvmpt |
⊢ ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↦ ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) = ( 𝑦 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↦ ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑦 ) ) |
25 |
|
zringcrng |
⊢ ℤring ∈ CRing |
26 |
25
|
a1i |
⊢ ( 𝜑 → ℤring ∈ CRing ) |
27 |
|
zringring |
⊢ ℤring ∈ Ring |
28 |
27
|
a1i |
⊢ ( 𝜑 → ℤring ∈ Ring ) |
29 |
|
eqid |
⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) |
30 |
29 15
|
kerlidl |
⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ∈ ( LIdeal ‘ ℤring ) ) |
31 |
18 30
|
syl |
⊢ ( 𝜑 → ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ∈ ( LIdeal ‘ ℤring ) ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑁 } ) → 𝑎 ∈ { 𝑁 } ) |
33 |
|
elsng |
⊢ ( 𝑎 ∈ { 𝑁 } → ( 𝑎 ∈ { 𝑁 } ↔ 𝑎 = 𝑁 ) ) |
34 |
32 33
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑁 } ) → ( 𝑎 ∈ { 𝑁 } → 𝑎 = 𝑁 ) ) |
35 |
34
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑁 } ) ∧ 𝑎 ∈ { 𝑁 } ) → 𝑎 = 𝑁 ) |
36 |
32 35
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑁 } ) → 𝑎 = 𝑁 ) |
37 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
38 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
39 |
37 38
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
40 |
17 39
|
syl |
⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
41 |
1 40
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
42 |
41
|
ffnd |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) Fn ℤ ) |
43 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
44 |
|
eqid |
⊢ ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 ) |
45 |
44 16 15
|
chrdvds |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( ( chr ‘ 𝑅 ) ∥ 𝑁 ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) = ( 0g ‘ 𝑅 ) ) ) |
46 |
1 43 45
|
syl2anc |
⊢ ( 𝜑 → ( ( chr ‘ 𝑅 ) ∥ 𝑁 ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) = ( 0g ‘ 𝑅 ) ) ) |
47 |
4 46
|
mpbid |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) = ( 0g ‘ 𝑅 ) ) |
48 |
|
fvexd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) ∈ V ) |
49 |
|
elsng |
⊢ ( ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) ∈ V → ( ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) ∈ { ( 0g ‘ 𝑅 ) } ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) = ( 0g ‘ 𝑅 ) ) ) |
50 |
48 49
|
syl |
⊢ ( 𝜑 → ( ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) ∈ { ( 0g ‘ 𝑅 ) } ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) = ( 0g ‘ 𝑅 ) ) ) |
51 |
47 50
|
mpbird |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑁 ) ∈ { ( 0g ‘ 𝑅 ) } ) |
52 |
42 43 51
|
elpreimad |
⊢ ( 𝜑 → 𝑁 ∈ ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑁 } ) → 𝑁 ∈ ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ) |
54 |
36 53
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑁 } ) → 𝑎 ∈ ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ) |
55 |
54
|
ex |
⊢ ( 𝜑 → ( 𝑎 ∈ { 𝑁 } → 𝑎 ∈ ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ) ) |
56 |
55
|
ssrdv |
⊢ ( 𝜑 → { 𝑁 } ⊆ ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ) |
57 |
8 29
|
rspssp |
⊢ ( ( ℤring ∈ Ring ∧ ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ∈ ( LIdeal ‘ ℤring ) ∧ { 𝑁 } ⊆ ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ⊆ ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ) |
58 |
28 31 56 57
|
syl3anc |
⊢ ( 𝜑 → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ⊆ ( ◡ ( ℤRHom ‘ 𝑅 ) “ { ( 0g ‘ 𝑅 ) } ) ) |
59 |
26
|
crngringd |
⊢ ( 𝜑 → ℤring ∈ Ring ) |
60 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑁 } ) → 𝑁 ∈ ℤ ) |
61 |
36 60
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑁 } ) → 𝑎 ∈ ℤ ) |
62 |
61
|
ex |
⊢ ( 𝜑 → ( 𝑎 ∈ { 𝑁 } → 𝑎 ∈ ℤ ) ) |
63 |
62
|
ssrdv |
⊢ ( 𝜑 → { 𝑁 } ⊆ ℤ ) |
64 |
8 37 29
|
rspcl |
⊢ ( ( ℤring ∈ Ring ∧ { 𝑁 } ⊆ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
65 |
59 63 64
|
syl2anc |
⊢ ( 𝜑 → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
66 |
15 18 19 9 24 26 58 65
|
rhmqusnsg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↦ ∪ ( ( ℤRHom ‘ 𝑅 ) “ 𝑥 ) ) ∈ ( ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) RingHom 𝑅 ) ) |
67 |
14 66
|
eqeltrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) RingHom 𝑅 ) ) |
68 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) |
69 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
70 |
8 9 5
|
znadd |
⊢ ( 𝑁 ∈ ℕ0 → ( +g ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( +g ‘ 𝑍 ) ) |
71 |
7 70
|
syl |
⊢ ( 𝜑 → ( +g ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( +g ‘ 𝑍 ) ) |
72 |
71
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ∧ 𝑏 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) ) → ( 𝑎 ( +g ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑍 ) 𝑏 ) ) |
73 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
74 |
8 9 5
|
znmul |
⊢ ( 𝑁 ∈ ℕ0 → ( .r ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( .r ‘ 𝑍 ) ) |
75 |
7 74
|
syl |
⊢ ( 𝜑 → ( .r ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( .r ‘ 𝑍 ) ) |
76 |
75
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ∧ 𝑏 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) ) → ( 𝑎 ( .r ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑍 ) 𝑏 ) ) |
77 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
78 |
68 69 11 69 72 73 76 77
|
rhmpropd |
⊢ ( 𝜑 → ( ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) RingHom 𝑅 ) = ( 𝑍 RingHom 𝑅 ) ) |
79 |
67 78
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑍 RingHom 𝑅 ) ) |