Step |
Hyp |
Ref |
Expression |
1 |
|
zndvdchrrhm.1 |
|
2 |
|
zndvdchrrhm.2 |
|
3 |
|
zndvdchrrhm.3 |
|
4 |
|
zndvdchrrhm.4 |
|
5 |
|
zndvdchrrhm.5 |
|
6 |
|
zndvdchrrhm.6 |
|
7 |
2
|
nnnn0d |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
8 9 5
|
znbas2 |
|
11 |
7 10
|
syl |
|
12 |
11
|
eqcomd |
|
13 |
12
|
mpteq1d |
|
14 |
6 13
|
eqtrid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
16
|
zrhrhm |
|
18 |
1 17
|
syl |
|
19 |
|
eqid |
|
20 |
|
nfcv |
|
21 |
|
nfcv |
|
22 |
|
imaeq2 |
|
23 |
22
|
unieqd |
|
24 |
20 21 23
|
cbvmpt |
|
25 |
|
zringcrng |
|
26 |
25
|
a1i |
|
27 |
|
zringring |
|
28 |
27
|
a1i |
|
29 |
|
eqid |
|
30 |
29 15
|
kerlidl |
|
31 |
18 30
|
syl |
|
32 |
|
simpr |
|
33 |
|
elsng |
|
34 |
32 33
|
syl5ibcom |
|
35 |
34
|
imp |
|
36 |
32 35
|
mpdan |
|
37 |
|
zringbas |
|
38 |
|
eqid |
|
39 |
37 38
|
rhmf |
|
40 |
17 39
|
syl |
|
41 |
1 40
|
syl |
|
42 |
41
|
ffnd |
|
43 |
2
|
nnzd |
|
44 |
|
eqid |
|
45 |
44 16 15
|
chrdvds |
|
46 |
1 43 45
|
syl2anc |
|
47 |
4 46
|
mpbid |
|
48 |
|
fvexd |
|
49 |
|
elsng |
|
50 |
48 49
|
syl |
|
51 |
47 50
|
mpbird |
|
52 |
42 43 51
|
elpreimad |
|
53 |
52
|
adantr |
|
54 |
36 53
|
eqeltrd |
|
55 |
54
|
ex |
|
56 |
55
|
ssrdv |
|
57 |
8 29
|
rspssp |
|
58 |
28 31 56 57
|
syl3anc |
|
59 |
26
|
crngringd |
|
60 |
43
|
adantr |
|
61 |
36 60
|
eqeltrd |
|
62 |
61
|
ex |
|
63 |
62
|
ssrdv |
|
64 |
8 37 29
|
rspcl |
|
65 |
59 63 64
|
syl2anc |
|
66 |
15 18 19 9 24 26 58 65
|
rhmqusnsg |
|
67 |
14 66
|
eqeltrd |
|
68 |
|
eqidd |
|
69 |
|
eqidd |
|
70 |
8 9 5
|
znadd |
|
71 |
7 70
|
syl |
|
72 |
71
|
oveqdr |
|
73 |
|
eqidd |
|
74 |
8 9 5
|
znmul |
|
75 |
7 74
|
syl |
|
76 |
75
|
oveqdr |
|
77 |
|
eqidd |
|
78 |
68 69 11 69 72 73 76 77
|
rhmpropd |
|
79 |
67 78
|
eleqtrd |
|