| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zndvdchrrhm.1 |
|
| 2 |
|
zndvdchrrhm.2 |
|
| 3 |
|
zndvdchrrhm.3 |
|
| 4 |
|
zndvdchrrhm.4 |
|
| 5 |
|
zndvdchrrhm.5 |
|
| 6 |
|
zndvdchrrhm.6 |
|
| 7 |
2
|
nnnn0d |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
8 9 5
|
znbas2 |
|
| 11 |
7 10
|
syl |
|
| 12 |
11
|
eqcomd |
|
| 13 |
12
|
mpteq1d |
|
| 14 |
6 13
|
eqtrid |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
16
|
zrhrhm |
|
| 18 |
1 17
|
syl |
|
| 19 |
|
eqid |
|
| 20 |
|
nfcv |
|
| 21 |
|
nfcv |
|
| 22 |
|
imaeq2 |
|
| 23 |
22
|
unieqd |
|
| 24 |
20 21 23
|
cbvmpt |
|
| 25 |
|
zringcrng |
|
| 26 |
25
|
a1i |
|
| 27 |
|
zringring |
|
| 28 |
27
|
a1i |
|
| 29 |
|
eqid |
|
| 30 |
29 15
|
kerlidl |
|
| 31 |
18 30
|
syl |
|
| 32 |
|
simpr |
|
| 33 |
|
elsng |
|
| 34 |
32 33
|
syl5ibcom |
|
| 35 |
34
|
imp |
|
| 36 |
32 35
|
mpdan |
|
| 37 |
|
zringbas |
|
| 38 |
|
eqid |
|
| 39 |
37 38
|
rhmf |
|
| 40 |
17 39
|
syl |
|
| 41 |
1 40
|
syl |
|
| 42 |
41
|
ffnd |
|
| 43 |
2
|
nnzd |
|
| 44 |
|
eqid |
|
| 45 |
44 16 15
|
chrdvds |
|
| 46 |
1 43 45
|
syl2anc |
|
| 47 |
4 46
|
mpbid |
|
| 48 |
|
fvexd |
|
| 49 |
|
elsng |
|
| 50 |
48 49
|
syl |
|
| 51 |
47 50
|
mpbird |
|
| 52 |
42 43 51
|
elpreimad |
|
| 53 |
52
|
adantr |
|
| 54 |
36 53
|
eqeltrd |
|
| 55 |
54
|
ex |
|
| 56 |
55
|
ssrdv |
|
| 57 |
8 29
|
rspssp |
|
| 58 |
28 31 56 57
|
syl3anc |
|
| 59 |
26
|
crngringd |
|
| 60 |
43
|
adantr |
|
| 61 |
36 60
|
eqeltrd |
|
| 62 |
61
|
ex |
|
| 63 |
62
|
ssrdv |
|
| 64 |
8 37 29
|
rspcl |
|
| 65 |
59 63 64
|
syl2anc |
|
| 66 |
15 18 19 9 24 26 58 65
|
rhmqusnsg |
|
| 67 |
14 66
|
eqeltrd |
|
| 68 |
|
eqidd |
|
| 69 |
|
eqidd |
|
| 70 |
8 9 5
|
znadd |
|
| 71 |
7 70
|
syl |
|
| 72 |
71
|
oveqdr |
|
| 73 |
|
eqidd |
|
| 74 |
8 9 5
|
znmul |
|
| 75 |
7 74
|
syl |
|
| 76 |
75
|
oveqdr |
|
| 77 |
|
eqidd |
|
| 78 |
68 69 11 69 72 73 76 77
|
rhmpropd |
|
| 79 |
67 78
|
eleqtrd |
|