Metamath Proof Explorer


Theorem zndvdchrrhm

Description: Construction of a ring homomorphism from Z/nZ to R when the characteristic of R divides N . (Contributed by metakunt, 4-Jun-2025)

Ref Expression
Hypotheses zndvdchrrhm.1 φ R Ring
zndvdchrrhm.2 φ N
zndvdchrrhm.3 φ chr R
zndvdchrrhm.4 φ chr R N
zndvdchrrhm.5 Z = /N
zndvdchrrhm.6 F = x Base Z ℤRHom R x
Assertion zndvdchrrhm φ F Z RingHom R

Proof

Step Hyp Ref Expression
1 zndvdchrrhm.1 φ R Ring
2 zndvdchrrhm.2 φ N
3 zndvdchrrhm.3 φ chr R
4 zndvdchrrhm.4 φ chr R N
5 zndvdchrrhm.5 Z = /N
6 zndvdchrrhm.6 F = x Base Z ℤRHom R x
7 2 nnnn0d φ N 0
8 eqid RSpan ring = RSpan ring
9 eqid ring / 𝑠 ring ~ QG RSpan ring N = ring / 𝑠 ring ~ QG RSpan ring N
10 8 9 5 znbas2 N 0 Base ring / 𝑠 ring ~ QG RSpan ring N = Base Z
11 7 10 syl φ Base ring / 𝑠 ring ~ QG RSpan ring N = Base Z
12 11 eqcomd φ Base Z = Base ring / 𝑠 ring ~ QG RSpan ring N
13 12 mpteq1d φ x Base Z ℤRHom R x = x Base ring / 𝑠 ring ~ QG RSpan ring N ℤRHom R x
14 6 13 eqtrid φ F = x Base ring / 𝑠 ring ~ QG RSpan ring N ℤRHom R x
15 eqid 0 R = 0 R
16 eqid ℤRHom R = ℤRHom R
17 16 zrhrhm R Ring ℤRHom R ring RingHom R
18 1 17 syl φ ℤRHom R ring RingHom R
19 eqid ℤRHom R -1 0 R = ℤRHom R -1 0 R
20 nfcv _ y ℤRHom R x
21 nfcv _ x ℤRHom R y
22 imaeq2 x = y ℤRHom R x = ℤRHom R y
23 22 unieqd x = y ℤRHom R x = ℤRHom R y
24 20 21 23 cbvmpt x Base ring / 𝑠 ring ~ QG RSpan ring N ℤRHom R x = y Base ring / 𝑠 ring ~ QG RSpan ring N ℤRHom R y
25 zringcrng ring CRing
26 25 a1i φ ring CRing
27 zringring ring Ring
28 27 a1i φ ring Ring
29 eqid LIdeal ring = LIdeal ring
30 29 15 kerlidl ℤRHom R ring RingHom R ℤRHom R -1 0 R LIdeal ring
31 18 30 syl φ ℤRHom R -1 0 R LIdeal ring
32 simpr φ a N a N
33 elsng a N a N a = N
34 32 33 syl5ibcom φ a N a N a = N
35 34 imp φ a N a N a = N
36 32 35 mpdan φ a N a = N
37 zringbas = Base ring
38 eqid Base R = Base R
39 37 38 rhmf ℤRHom R ring RingHom R ℤRHom R : Base R
40 17 39 syl R Ring ℤRHom R : Base R
41 1 40 syl φ ℤRHom R : Base R
42 41 ffnd φ ℤRHom R Fn
43 2 nnzd φ N
44 eqid chr R = chr R
45 44 16 15 chrdvds R Ring N chr R N ℤRHom R N = 0 R
46 1 43 45 syl2anc φ chr R N ℤRHom R N = 0 R
47 4 46 mpbid φ ℤRHom R N = 0 R
48 fvexd φ ℤRHom R N V
49 elsng ℤRHom R N V ℤRHom R N 0 R ℤRHom R N = 0 R
50 48 49 syl φ ℤRHom R N 0 R ℤRHom R N = 0 R
51 47 50 mpbird φ ℤRHom R N 0 R
52 42 43 51 elpreimad φ N ℤRHom R -1 0 R
53 52 adantr φ a N N ℤRHom R -1 0 R
54 36 53 eqeltrd φ a N a ℤRHom R -1 0 R
55 54 ex φ a N a ℤRHom R -1 0 R
56 55 ssrdv φ N ℤRHom R -1 0 R
57 8 29 rspssp ring Ring ℤRHom R -1 0 R LIdeal ring N ℤRHom R -1 0 R RSpan ring N ℤRHom R -1 0 R
58 28 31 56 57 syl3anc φ RSpan ring N ℤRHom R -1 0 R
59 26 crngringd φ ring Ring
60 43 adantr φ a N N
61 36 60 eqeltrd φ a N a
62 61 ex φ a N a
63 62 ssrdv φ N
64 8 37 29 rspcl ring Ring N RSpan ring N LIdeal ring
65 59 63 64 syl2anc φ RSpan ring N LIdeal ring
66 15 18 19 9 24 26 58 65 rhmqusnsg φ x Base ring / 𝑠 ring ~ QG RSpan ring N ℤRHom R x ring / 𝑠 ring ~ QG RSpan ring N RingHom R
67 14 66 eqeltrd φ F ring / 𝑠 ring ~ QG RSpan ring N RingHom R
68 eqidd φ Base ring / 𝑠 ring ~ QG RSpan ring N = Base ring / 𝑠 ring ~ QG RSpan ring N
69 eqidd φ Base R = Base R
70 8 9 5 znadd N 0 + ring / 𝑠 ring ~ QG RSpan ring N = + Z
71 7 70 syl φ + ring / 𝑠 ring ~ QG RSpan ring N = + Z
72 71 oveqdr φ a Base ring / 𝑠 ring ~ QG RSpan ring N b Base ring / 𝑠 ring ~ QG RSpan ring N a + ring / 𝑠 ring ~ QG RSpan ring N b = a + Z b
73 eqidd φ a Base R b Base R a + R b = a + R b
74 8 9 5 znmul N 0 ring / 𝑠 ring ~ QG RSpan ring N = Z
75 7 74 syl φ ring / 𝑠 ring ~ QG RSpan ring N = Z
76 75 oveqdr φ a Base ring / 𝑠 ring ~ QG RSpan ring N b Base ring / 𝑠 ring ~ QG RSpan ring N a ring / 𝑠 ring ~ QG RSpan ring N b = a Z b
77 eqidd φ a Base R b Base R a R b = a R b
78 68 69 11 69 72 73 76 77 rhmpropd φ ring / 𝑠 ring ~ QG RSpan ring N RingHom R = Z RingHom R
79 67 78 eleqtrd φ F Z RingHom R